962 resultados para Canopy photosynthesis
Resumo:
<p>Terrestrial ecosystems, occupying more than 25% of the Earth's surface, can serve as</p><p>`biological valves' in regulating the anthropogenic emissions of atmospheric aerosol</p><p>particles and greenhouse gases (GHGs) as responses to their surrounding environments.</p><p>While the signicance of quantifying the exchange rates of GHGs and atmospheric</p><p>aerosol particles between the terrestrial biosphere and the atmosphere is</p><p>hardly questioned in many scientic elds, the progress in improving model predictability,</p><p>data interpretation or the combination of the two remains impeded by</p><p>the lack of precise framework elucidating their dynamic transport processes over a</p><p>wide range of spatiotemporal scales. The diculty in developing prognostic modeling</p><p>tools to quantify the source or sink strength of these atmospheric substances</p><p>can be further magnied by the fact that the climate system is also sensitive to the</p><p>feedback from terrestrial ecosystems forming the so-called `feedback cycle'. Hence,</p><p>the emergent need is to reduce uncertainties when assessing this complex and dynamic</p><p>feedback cycle that is necessary to support the decisions of mitigation and</p><p>adaptation policies associated with human activities (e.g., anthropogenic emission</p><p>controls and land use managements) under current and future climate regimes.</p><p>With the goal to improve the predictions for the biosphere-atmosphere exchange</p><p>of biologically active gases and atmospheric aerosol particles, the main focus of this</p><p>dissertation is on revising and up-scaling the biotic and abiotic transport processes</p><p>from leaf to canopy scales. The validity of previous modeling studies in determining</p><p>iv</p><p>the exchange rate of gases and particles is evaluated with detailed descriptions of their</p><p>limitations. Mechanistic-based modeling approaches along with empirical studies</p><p>across dierent scales are employed to rene the mathematical descriptions of surface</p><p>conductance responsible for gas and particle exchanges as commonly adopted by all</p><p>operational models. Specically, how variation in horizontal leaf area density within</p><p>the vegetated medium, leaf size and leaf microroughness impact the aerodynamic attributes</p><p>and thereby the ultrane particle collection eciency at the leaf/branch scale</p><p>is explored using wind tunnel experiments with interpretations by a porous media</p><p>model and a scaling analysis. A multi-layered and size-resolved second-order closure</p><p>model combined with particle </p><p>uxes and concentration measurements within and</p><p>above a forest is used to explore the particle transport processes within the canopy</p><p>sub-layer and the partitioning of particle deposition onto canopy medium and forest</p><p>oor. For gases, a modeling framework accounting for the leaf-level boundary layer</p><p>eects on the stomatal pathway for gas exchange is proposed and combined with sap</p><p>ux measurements in a wind tunnel to assess how leaf-level transpiration varies with</p><p>increasing wind speed. How exogenous environmental conditions and endogenous</p><p>soil-root-stem-leaf hydraulic and eco-physiological properties impact the above- and</p><p>below-ground water dynamics in the soil-plant system and shape plant responses</p><p>to droughts is assessed by a porous media model that accommodates the transient</p><p>water </p><p>ow within the plant vascular system and is coupled with the aforementioned</p><p>leaf-level gas exchange model and soil-root interaction model. It should be noted</p><p>that tackling all aspects of potential issues causing uncertainties in forecasting the</p><p>feedback cycle between terrestrial ecosystem and the climate is unrealistic in a single</p><p>dissertation but further research questions and opportunities based on the foundation</p><p>derived from this dissertation are also brie</p><p>y discussed.</p>
Resumo:
This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.
Resumo:
This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.
Resumo:
This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.
Resumo:
This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.
Resumo:
Phytoplankton are the basis of marine food webs, and affect biogeochemical cycles. As CO2 levels increase, shifts in the frequencies and physiology of ecotypes within phytoplankton groups will affect their nutritional value and biogeochemical function. However, studies so far are based on a few representative genotypes from key species. Here, we measure changes in cellular function and growth rate at atmospheric CO2 concentrations predicted for the year 2100 in 16 ecotypes of the marine picoplankton Ostreococcus. We find that variation in plastic responses among ecotypes is on par with published between-genera variation, so the responses of one or a few ecotypes cannot estimate changes to the physiology or composition of a species under CO2 enrichment. We show that ecotypes best at taking advantage of CO2 enrichment by changing their photosynthesis rates most should increase in relative fitness, and so in frequency in a high-CO2 environment. Finally, information on sampling location, and not phylogenetic relatedness, is a good predictor of ecotypes likely to increase in frequency in this system.
Resumo:
The effect of decreasing aragonite saturation state (Omega Arag) of seawater (elevated pCO2) on calcification rates of Acropora muricata was studied using nubbins prepared from parent colonies located at two sites of La Saline reef (La Réunion Island, western Indian Ocean): a back-reef site (BR) affected by nutrient-enriched groundwater discharge (mainly nitrate), and a reef flat site (RF) with low terrigenous inputs. Protein and chlorophyll a content of the nubbins, as well as zooxanthellae abundance, were lower at RF than BR. Nubbins were incubated at ~27°C over 2 h under sunlight, in filtered seawater manipulated to get differing initial pCO2 (1,440-340 µatm), Omega Arag (1.4-4.0), and dissolved inorganic carbon (DIC) concentrations (2,100-1,850 µmol kg-1). Increasing DIC concentrations at constant total alkalinity (AT) resulted in a decrease in Omega Arag and an increase in pCO2. AT at the beginning of the incubations was kept at a natural level of 2,193 +- 6 µmol kg-1 (mean +- SD). Net photosynthesis (NP) and calcification were calculated from changes in pH and AT during the incubations. Calcification decrease in response to doubling pCO2 relative to preindustrial level was 22% for RF nubbins. When normalized to surface area of the nubbins, (1) NP and calcification were higher at BR than RF, (2) NP increased in high pCO2 treatments at BR compared to low pCO2 treatments, and (3) calcification was not related to Omega Arag at BR. When normalized to NP, calcification was linearly related to Omega Arag at both sites, and the slopes of the relationships were not significantly different. The increase in NP at BR in the high pCO2 treatments may have increased calcification and thus masked the negative effect of low Omega Arag on calcification. Removing the effect of NP variations at BR showed that calcification declined in a similar manner with decreased Omega Arag (increased pCO2) whatever the nutrient loading.
Resumo:
Changes in environmental conditions, such as those caused by elevated carbon dioxide (CO2), potentially alter the outcome of competitive interactions between species. This study aimed to understand how elevated CO2 could influence competitive interactions between hard and soft corals, by investigating growth and photosynthetic activity of Porites cylindrica (a hard coral) under elevated CO2 and in the presence of another hard coral and two soft coral competitors. Corals were collected from reefs around Orpheus and Pelorus Islands on the Great Barrier Reef, Australia. They were then exposed to elevated pCO2 for 4 weeks with two CO2 treatments: intermediate (pCO2 648) and high (pCO2 1003) compared with a control (unmanipulated seawater) treatment (pCO2 358). Porites cylindrica growth did not vary among pCO2 treatments, regardless of the presence and type of competitors, nor was the growth of another hard coral species, Acropora cerealis, affected by pCO2 treatment. Photosynthetic rates of P. cylindrica were sensitive to variations in pCO2, and varied between the side of the fragment facing the competitors vs. the side facing away from the competitor. However, variation in photosynthetic rates depended on pCO2 treatment, competitor identity, and whether the photosynthetic yields were measured as maximum or effective photosynthetic yield. This study suggests that elevated CO2 may impair photosynthetic activity, but not growth, of a hard coral under competition and confirms the hypothesis that soft corals are generally resistant to elevated CO2. Overall, our results indicate that shifts in the species composition in coral communities as a result of elevated CO2 could be more strongly related to the individual tolerance of different species rather than a result of competitive interactions between species.
Resumo:
We show here that CO2 partial pressure (pCO2) and temperature significantly interact on coral physiology. The effects of increased pCO2 and temperature on photosynthesis, respiration and calcification rates were investigated in the scleractinian coral Stylophora pistillata. Cuttings were exposed to temperatures of 25°C or 28°C and to pCO2 values of ca. 460 or 760 muatm for 5 weeks. The contents of chlorophyll c2 and protein remained constant throughout the experiment, while the chlorophyll a content was significantly affected by temperature, and was higher under the 'high-temperature-high-pCO2' condition. The cell-specific density was higher at 'high pCO2' than at 'normal pCO2' (1.7 vs. 1.4). The net photosynthesis normalized per unit protein was affected by both temperature and pCO2, whereas respiration was not affected by the treatments. Calcification decreased by 50% when temperature and pCO2 were both elevated. Calcification under normal temperature did not change in response to an increased pCO2. This is not in agreement with numerous published papers that describe a negative relationship between marine calcification and CO2. The confounding effect of temperature has the potential to explain a large portion of the variability of the relationship between calcification and pCO2 reported in the literature, and warrants a re-evaluation of the projected decrease of marine calcification by the year 2100.
Resumo:
An investigation was conducted to determine the effects of elevated pCO2 on the net production and calcification of an assemblage of corals maintained under near-natural conditions of temperature, light, nutrient, and flow. Experiments were performed in summer and winter to explore possible interactions between seasonal change in temperature and irradiance and the effect of elevated pCO2. Particular attention was paid to interactions between net production and calcification because these two processes are thought to compete for the same internal supply of dissolved inorganic carbon (DIC). A nutrient enrichment experiment was performed because it has been shown to induce a competitive interaction between photosynthesis and calcification that may serve as an analog to the effect of elevated pCO2. Net carbon production, NPC, increased with increased pCO2 at the rate of 3 ± 2% (?mol CO2aq kg?1)?1. Seasonal change of the slope NPC-[CO2aq] relationship was not significant. Calcification (G) was strongly related to the aragonite saturation state ? a . Seasonal change of the G-? a relationship was not significant. The first-order saturation state model gave a good fit to the pooled summer and winter data: G = (8 ± 1 mmol CaCO3 m?2 h?1)(? a ? 1), r 2 = 0.87, P = 0.0001. Both nutrient and CO2 enrichment resulted in an increase in NPC and a decrease in G, giving support to the hypothesis that the cellular mechanism underlying the decrease in calcification in response to increased pCO2 could be competition between photosynthesis and calcification for a limited supply of DIC.
Resumo:
The combination of elevated CO2 and the increased acidity in surface oceans is likely to have an impact on photosynthesis via its effects on inorganic carbon speciation and on the overall energetics of phytoplankton. Exposure to UV radiation (UVR) may also have a role in the response to elevated CO2 and acidification, due to the fact that UVR may variously impact on photosynthesis and because of the energy demand of UVR defense. The cell may gain energy by down-regulating the CO2 concentrating mechanism, which may lead to a greater ability to cope with UVR and/or higher growth rates. In order to clarify the interplay of cell responses to increasing CO2 and UVR, we investigated the photosynthetic response of the marine and estuarine diatom Cylindrotheca closterium f. minutissima cultured at either 390 (ambient) or 800 (elevated) ppmv CO2, while exposed to solar radiation with or without UVR (UVR, 280-400 nm). After a 6 day acclimation period, the growth rate of cells was little affected by elevated CO2 and no obvious correlation with the radiation dose (for both PAR and PAR + UV treatments) could be detected. However, the relative electron transport rate was reduced and was more sensitive to UVR in cells main - tained at elevated CO2 as compared to cells cultured at ambient CO2. The CO2 concentrating mechanism was down regulated at 800 ppmv CO2, but was apparently not completely switched off. These data are discussed with respect to their significance in the context of global climate change.
Resumo:
The influence of habitat modification by Mytilus edulis L. on the settlement and development of Fucus serratus populations was investigated on rocky shores of the Isle of Anglesey, North Wales. Settlement of fucoids was higher inside mussel habitat than outside on one of two shores studied. The effect of microhabitat on survival of fucoid germlings was examined by transplanting the germlings into and outside mussel habitats, each with and without the exclusion of grazers. Observation showed that periwinkles and top shells were abundant in mussel habitat, while limpets dominated bare rock. Exclusion of grazers greatly enhanced the survival of fucoid germlings in both habitats, indicating that while mussel habitat supports a different grazer assemblage to bare rock, both assemblages are important in limiting fucoid recruitment. The risk of dislodgement was assessed and compared between fucoids growing on mussel shells and bare rock. In situ pull-tests showed that less force was required to detach large fertile thalli growing on mussel shells than those growing on the rock. Adhesion was generally broken between the mussel and the rock rather than between the holdfast and the mussel. These observations indicate that mussels provide an unstable substrate for mature fucoids. Overall results suggest that a negative effect of mussel-modified habitat on fucoids is profound in adults; but the effect is context-dependent in juveniles and can be positive at settlement. Results from a survey on population structure of fucoids across two shores showed that there were greater numbers of large fertile fucoids growing directly attached to rock than on mussel shells, while there was no difference for juvenile fucoids confirming the experimental results. Moreover thalli larger than 60 cm were found only on the rock but not on shells. This finding suggests that a mussel dominated habitat may have a significant impact on reproductive output in fucoid populations.
Resumo:
The influence of habitat modification by Mytilus edulis L. on the settlement and development of Fucus serratus populations was investigated on rocky shores of the Isle of Anglesey, North Wales. Settlement of fucoids was higher inside mussel habitat than outside on one of two shores studied. The effect of microhabitat on survival of fucoid germlings was examined by transplanting the germlings into and outside mussel habitats, each with and without the exclusion of grazers. Observation showed that periwinkles and top shells were abundant in mussel habitat, while limpets dominated bare rock. Exclusion of grazers greatly enhanced the survival of fucoid germlings in both habitats, indicating that while mussel habitat supports a different grazer assemblage to bare rock, both assemblages are important in limiting fucoid recruitment. The risk of dislodgement was assessed and compared between fucoids growing on mussel shells and bare rock. In situ pull-tests showed that less force was required to detach large fertile thalli growing on mussel shells than those growing on the rock. Adhesion was generally broken between the mussel and the rock rather than between the holdfast and the mussel. These observations indicate that mussels provide an unstable substrate for mature fucoids. Overall results suggest that a negative effect of mussel-modified habitat on fucoids is profound in adults; but the effect is context-dependent in juveniles and can be positive at settlement. Results from a survey on population structure of fucoids across two shores showed that there were greater numbers of large fertile fucoids growing directly attached to rock than on mussel shells, while there was no difference for juvenile fucoids confirming the experimental results. Moreover thalli larger than 60 cm were found only on the rock but not on shells. This finding suggests that a mussel dominated habitat may have a significant impact on reproductive output in fucoid populations.
Resumo:
Highly purified, intact chloroplasts were prepared from pea (Pisum sativum L.) and spinach (Spinacia oleracea L.) following an identical procedure, and were used to investigate the cupric cation inhibition on the photosynthetic activity. In both species, copper inhibition showed a similar inhibitor concentration that decreases the enzyme activity by 50% (IC(50) approximately 1.8 microM) and did not depend on the internal or external phosphate (Pi) concentration, indicating that copper did not interact with the Pi translocator. Fluorescence analysis suggested that the presence of copper did not facilitate photoinhibition, because there were no changes in maximal fluorescence (F(m)) nor in basal fluorescence (F(o)) of copper-treated samples. The electron transport through the photosystem II (PSII) was also not affected (operating efficiency of PSII-F'v/F'm similar in all conditions). Yet, under Cu(2+) stress, the proportion of open PSII reaction centers was dramatically decreased, and the first quinone acceptor (Q(A)) reoxidation was fully inhibited, as demonstrated by the constant photochemical quenching (q(P)) along experiment time. The quantum yield of PSII electron transport (Phi(PSII)) was also clearly affected by copper, and therefore reduced the photochemistry efficiency. Manganese, when added simultaneously with copper, delayed the inhibition, as measured by oxygen evolution and chlorophyll fluorescence, but neither reversed the copper effect when added to copper-inhibited plastids, nor prevented the inhibition of the Hill activity of isolated copper-treated thylakoids. Our results suggest that manganese competed with copper to penetrate the chloroplast envelope. This competition seems to be specific because other divalent cations e.g. magnesium and calcium, did not interfere with the copper action in intact chloroplasts. All results do suggest that, under these conditions, the stroma proteins, such as the Calvin-Benson cycle enzymes or others are the most probable first target for the Cu(2+) action, resulting in the total inhibition of chloroplast photosynthesis and in the consequent unbalanced rate of production and consumption of the reducing power.