937 resultados para Cancer stem cell


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutant mice produced by gene targeting in embryonic stem (ES) cells often have a complex or embryonic lethal phenotype. In these cases, it would be helpful to identify tissues and cell types first affected in mutant embryos by following the contribution to chimeras of ES cells homozygous for the mutant allele. Although a number of strategies for following ES cell development in vivo have been reported, each has limitations that preclude its general application. In this paper, we describe ES cell lines that can be tracked to every nucleated cell type in chimeras at all developmental stages. These lines were derived from blastocysts of mice that carry an 11-Mb beta-globin transgene on chromosome 3. The transgene is readily detected by DNA in situ hybridization, providing an inert, nuclear-localized marker whose presence is not affected by transcriptional or translational controls. The "WW" series of ES lines possess the essential features of previously described ES lines, including giving rise to a preponderance of male chimeras, all of which have to date exhibited germ-line transmission. In addition, clones selected for single or double targeting events form strong chimeras, demonstrating the feasibility of using WW6 cells to identify phenotypes associated with the creation of a null mutant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hematopoietic stem cells (HSC) are unique in that they give rise both to new stem cells (self-renewal) and to all blood cell types. The cellular and molecular events responsible for the formation of HSC remain unknown mainly because no system exists to study it. Embryonic stem (ES) cells were induced to differentiate by coculture with the stromal cell line RP010 and the combination of interleukin (IL) 3, IL-6, and F (cell-free supernatants from cultures of the FLS4.1 fetal liver stromal cell line). Cell cytometry analysis of the mononuclear cells produced in the cultures was consistent with the presence of PgP-1+ Lin- early hematopoietic (B-220- Mac-1- JORO 75- TER 119-) cells and of fewer B-220+ IgM- B-cell progenitors and JORO 75+ T-lymphocyte progenitors. The cell-sorter-purified PgP-1+ Lin- cells produced by induced ES cells could repopulate the lymphoid, myeloid, and erythroid lineages of irradiated mice. The ES-derived PgP-1+ Lin- cells must possess extensive self-renewal potential, as they were able to produce hematopoietic repopulation of secondary mice recipients. Indeed, marrow cells from irradiated mice reconstituted (15-18 weeks before) with PgP-1+ Lin- cell-sorter-purified cells generated by induced ES cells repopulated the lymphoid, myeloid, and erythroid lineages of secondary mouse recipients assessed 16-20 weeks after their transfer into irradiated secondary mice. The results show that the culture conditions described here support differentiation of ES cells into hematopoietic cells with functional properties of HSC. It should now be possible to unravel the molecular events leading to the formation of HSC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Afin d’effectuer des études fonctionnelles sur le génome de la souris, notre laboratoire a généré une bibliothèque de clones de cellules souches embryonnaires (ESC) présentant des suppressions chromosomiques chevauchantes aléatoires – la bibliothèque DELES. Cette bibliothèque contient des délétions couvrant environ 25% du génome murin. Dans le laboratoire, nous comptons identifier de nouveaux déterminants du destin des cellules hématopoïétiques en utilisant cet outil. Un crible primaire utilisant la benzidine pour démontrer la présence d'hémoglobine dans des corps embryoïdes (EBS) a permis d’identifier plusieurs clones délétés présentant un phénotype hématopoïétique anormal. Comme cet essai ne vérifie que la présence d'hémoglobine, le but de mon projet est d'établir un essai in vitro de différenciation des ESC permettant de mesurer le potentiel hématopoïétique de clones DELES. Mon hypothèse est que l’essai de différenciation hématopoïétique publié par le Dr Keller peut être importé dans notre laboratoire et utilisé pour étudier l'engagement hématopoïétique des clones DELES. À l’aide d’essais de RT-QPCR et de FACS, j’ai pu contrôler la cinétique de différenciation hématopoïétique en suivant l’expression des gènes hématopoïétiques et des marqueurs de surface comme CD41, c-kit, RUNX1, GATA2, CD45, β-globine 1 et TER-119. Cet essai sera utilisé pour valider le potentiel hématopoïétique des clones DELES candidats identifiés dans le crible principal. Mon projet secondaire vise à utiliser la même stratégie rétro-virale a base de Cre-loxP utilisée pour générer la bibliothèque DELES pour générer une bibliothèque de cellules KBM-7 contenant des suppressions chromosomiques chevauchantes. Mon but ici est de tester si la lignée cellulaire leuémique humaine presque haploïde KBM-7 peut être exploitée en utilisant l'approche DELES pour créer cette bibliothèque. La bibliothèque de clones KBM-7 servira à définir les activités moléculaires de drogues anti-leucémiques potentielless que nous avons identifiées dans le laboratoire parce qu’elles inhibent la croissance cellulaire dans plusieurs échantillons de leucémie myéloïde aiguë dérivés de patients. Elle me permettra également d'identifier les voies de signalisation moléculaires qui, lorsque génétiquement perturbées, peuvent conférer une résistance à ces drogues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lifespan of plants ranges from a few weeks in annuals to thousands of years in trees. It is hard to explain such extreme longevity considering that DNA replication errors inevitably cause mutations. Without purging through meiotic recombination, the accumulation of somatic mutations will eventually result in mutational meltdown, a phenomenon known as Muller’s ratchet. Nevertheless, the lifespan of trees is limited more often by incidental disease or structural damage than by genetic aging. The key determinants of tree architecture are the axillary meristems, which form in the axils of leaves and grow out to form branches. The number of branches is low in annual plants, but in perennial plants iterative branching can result in thousands of terminal branches. Here, we use stem cell ablation and quantitative cell-lineage analysis to show that axillary meristems are set aside early, analogous to the metazoan germline. While neighboring cells divide vigorously, axillary meristem precursors maintain a quiescent state, with only 7–9 cell divisions occurring between the apical and axillary meristem. During iterative branching, the number of branches increases exponentially, while the number of cell divisions increases linearly. Moreover, computational modeling shows that stem cell arrangement and positioning of axillary meristems distribute somatic mutations around the main shoot, preventing their fixation and maximizing genetic heterogeneity. These features slow down Muller’s ratchet and thereby extend lifespan.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The granulocyte colony-stimulating factor (G-CSF) and Fit-3 receptor agonist progenipoietin-1 (ProGP-1) has potent effects on dendritic cell (DC) expansion and may be an alternative to G-CSF for the mobilization of stem cells for allogeneic stem cell transplantation (SCT). We studied the ability of stem cell grafts mobilized with this agent to induce graft-versus-host disease (GVHD) to minor and major histocompatibility antigens in the well-described B6 --> B6D2F1 SCT model. ProGP-1, G-CSIF, or control diluent was administered to donor B6 mice. ProGP-1 expanded all cell lineages in the spleen, and unseparated splenocytes from these animals produced large amounts of interleukin 10 (IL-10) and transforming growth factor beta (TGFbeta) whereas the expression of T-cell adhesion molecules was diminished. Transplantation survival was 0%, 50%, and 90% in recipients of control-, G-CSF-, and ProGP-1-treated allogeneic donor splenocytes, respectively (P < .0001). Donor pretreatment with ProGP-1 allowed a 4-fold escalation in T-cell dose over that possible with G-CSF. Donor CD4 T cells from allogeneic SCT recipients of ProGP-1 splenocytes demonstrated an anergic response to host antigen, and cytokine production (interferon gamma [IFNγ], IL-4, and IL-10) was also reduced while CD8 T-cell cytotoxicity to host antigens remained intact. Neither CD11c(hi) DCs nor CD11c(dim)/B220(hi) DCs from ProGP-1-treated animals conferred protection from GVHD when added to control spleen. Conversely, when equal numbers of purified T cells from control-, G-CSF-, or ProGP-1-treated allogeneic donors were added to allogeneic T-cell-depleted control spleen, survival at day 60 was 0%, 15%, and 90%, respectively (P < .0001). The improved survival in recipients of ProGP-1 T cells was associated with reductions in systemic tumor necrosis factor alpha generation and GVHD of the gastrointestinal tract. We conclude that donor pretreatment with ProGP-1 is superior to G-CSIF for the prevention of GVHD after allogeneic SCT, primarily due to incremental affects on T-cell phenotype and function

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of granulocyte colony-stimulating factor (G-CSF)-mobilized peripheral blood as a source of stem cells has resulted in a high incidence of severe chronic graft-versus-host disease (cGVHD), which compromises the outcome of clinical allogeneic stem cell transplantation. We have studied the effect of G-CSF on both immune complex and fibrotic cGVHD directed to major (DBA/2 --> B6D2F1) or minor (B10.D2 --> BALB/c) histocompatibility antigens. In both models, donor pretreatment with G-CSF reduced cGVHD mortality in association with type 2 differentiation. However, after escalation of the donor T-cell dose, scleroderma occurred in 90% of the recipients of grafts from G-CSF-treated donors. In contrast, only 11% of the recipients of control grafts developed scleroderma, and the severity of hepatic cGVHD was also reduced. Mixing studies confirmed that in the presence of high donor T-cell doses, the severity of scleroderma was determined by the non-T-cell fraction of grafts from G-CSF-treated donors. These data confirm that the induction of cGVHD after donor treatment with G-CSF is dependent on the transfer of large numbers of donor T cells in conjunction with a putatively expanded myeloid lineage, providing a further rationale for the limitation of cell dose in allogeneic stem cell transplantation. (C) 2004 American Society for Blood and Marrow Transplantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the well-characterised role of sonic hedgehog (Shh) in promoting interfollicular basal cell proliferation and hair follicle downgrowth, the role of hedgehog signalling during epidermal stem cell fate remains largely uncharacterised. In order to determine whether the three vertebrate hedgehog molecules play a role in regulating epidermal renewal we overexpressed sonic (Shh), desert (Dhh) and Indian (Ihh) hedgehog in the basal cells of mouse skin under the control of the human keratin 14 promoter. We observed no overt epidermal morphogenesis phenotype in response to Ihh overexpression, however Dhh overexpression resulted in a range of embryonic and adult skin manifestations indistinguishable from Shh overexpression. Two distinct novel phenotypes were observed amongst Shh and Dhh transgenics, one exhibiting epidermal progenitor cell hyperplasia with the other displaying a complete loss of epidermal tissue renewal indicating deregulation of stem cell activity. These data suggest that correct temporal regulation of hedgehog activity is a key factor in ensuring epidermal stem cell maintenance. In addition, we observed Shh and Dhh transgenic skin from both phenotypes developed lesions reminiscent of human basal cell carcinoma (BCC), indicating that BCCs can be generated despite the loss of much of the proliferative (basal) compartment. These data suggest the intriguing possibility that BCC can arise outside the stem cell population. Thus the elucidation of Shh (and Dhh) target gene activation in the skin will likely identify those genes responsible for increasing the proliferative potential of epidermal basal cells and the mechanisms involved in regulating epidermal stem cell fate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this investigation was to characterize the proliferative precursor cells in the adult mouse hippocampal region. Given that a very large number of new hippocampal cells are generated over the lifetime of an animal, it is predicted that a neural stem cell is ultimately responsible for maintaining this genesis. Although it is generally accepted that a proliferative precursor resides within the hippocampus, contradictory reports exist regarding the classification of this cell. Is it a true stem cell or a more limited progenitor? Using a strict functional definition of a neural stem cell and a number of in vitro assays, we report that the resident hippocampal precursor is a progenitor capable of proliferation and multipotential differentiation but is unable to self-renew and thus proliferate indefinitely. Furthermore, the mitogen FGF-2 stimulates proliferation of these cells to a greater extent than epidermal growth factor ( EGF). In addition, we found that BDNF was essential for the production of neurons from the hippocampal progenitor cells, being required during proliferation to trigger neuronal fate. In contrast, a bona fide neural stem cell was identified in the lateral wall of the lateral ventricle surrounding the hippocampus. Interestingly, EGF proved to be the stronger mitogenic factor for this cell, which was clearly a different precursor from the resident hippocampal progenitor. These results suggest that the stem cell ultimately responsible for adult hippocampal neurogenesis resides outside the hippocampus, producing progenitor cells that migrate into the neurogenic zones and proliferate to produce new neurons and glia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mobilization is now used worldwide to collect large numbers of hematopoietic stem and progenitor cells (HSPCs) for transplantation. Although the first mobilizing agents were discovered largely by accident, discovery of more efficient mobilizing agents will require a better understanding of the molecular mechanisms responsible. During the past 5 years, a number of mechanisms have been identified, shedding new light on the dynamics of the hematopoietic system in vivo and on the intricate relationship between hematopoiesis, innate immunity, and bone. After briefly reviewing the mechanisms by which circulating HSPCs home into the bone marrow and what keeps them there, the current knowledge of mechanisms responsible for HSPC mobilization in response to hematopoietic growth factors such as granulocyte colony-stimulating factor, chemotherapy, chemokines, and polyanions will be discussed together with current strategies developed to further increase HSPC mobilization. (c) 2006 International Society for Experimental Hematology.