924 resultados para Cancer, Posttraumatic Growth, PTSD
Resumo:
The approval in 2004 of bevacizumab (Avastin), a neutralizing monoclonal antibody directed against vascular endothelial growth factor (VEGF) as the first anti-angiogenic systemic drug to treat cancer patients validated the notion introduced 33 years earlier by Dr. Judah Folkman, that inhibition of tumor angiogenesis might be a valid approach to control tumor growth. Anti-angiogenic therapy was greeted in the clinic a major step forward in cancer treatment. At the same time this success recently boosted the field to the quest for new anti-angiogenic targets and drugs. In spite of this success, however, some old questions in the field have remained unanswered and new ones have emerged. They include the identification for surrogate markers of angiogenesis and anti-angiogenesis, the understanding about how anti-angiogenic therapy and chemotherapy synergize, the characterization of the biological consequences of sustained suppression of angiogenesis on tumor biology and normal tissue homeostasis, and the mechanisms of tumor escape from anti-angiogenesis. In this review we summarize some of these outstanding questions, and highlight future challenges in clinical, translational and experimental research in anti-angiogenic therapy that need to be addressed in order to improve current treatments and to design new drugs.
Resumo:
Rats bearing the Yoshida AH-130 ascites hepatoma showed enhanced fractional rates of protein degradation in gastrocnemius muscle, heart, and liver, while fractional synthesis rates were similar to those in non-tumor bearing rats. This hypercatabolic pattern was associated with marked perturbations of the hormonal homeostasis and presence of tumor necrosis factor in the circulation. The daily administration of a goat anti-murine TNF IgG to tumor-bearing rats decreased protein degradation rates in skeletal muscle, heart, and liver as compared with tumor-bearing rats receiving a nonimmune goat IgG. The anti-TNF treatment was also effective in attenuating early perturbations in insulin and corticosterone homeostasis. Although these results suggest that tumor necrosis factor plays a significant role in mediating the changes in protein turnover and hormone levels elicited by tumor growth, the inability of such treatment to prevent a reduction in body weight implies that other mediators or tumor-related events were also involved.
Resumo:
BACKGROUND: At least 2 apparently independent mechanisms, microsatellite instability (MSI) and chromosomal instability, are implicated in colorectal tumorigenesis. Their respective roles in predicting clinical outcomes of patients with T3N0 colorectal cancer remain unknown. METHODS: Eighty-eight patients with a sporadic T3N0 colon or rectal adenocarcinoma were followed up for a median of 67 months. For chromosomal instability analysis, Ki-ras mutations were determined by single-strand polymerase chain reaction, and p53 protein staining was studied by immunohistochemistry. For MSI analysis, DNA was amplified by polymerase chain reaction at 7 microsatellite targets (BAT25, BAT26, D17S250, D2S123, D5S346, transforming growth factor receptor II, and BAX). RESULTS: Overall 5-year survival rate was 72%. p53 protein nuclear staining was detected in 39 patients (44%), and MSI was detected in 21 patients (24%). MSI correlated with proximal location (P <.001) and mucinous content (P <.001). In a multivariate analysis, p53 protein expression carried a significant risk of death (relative risk = 4.0, 95% CI = 1.6 to 10.1, P =.004). By comparison, MSI was not a statistically significant prognostic factor for survival in this group (relative risk = 2.2, 95% CI = 0.6 to 7.3, P =.21). CONCLUSIONS: p53 protein overexpression provides better prognostic discrimination than MSI in predicting survival of patients with T3N0 colorectal cancer. Although MSI is associated with specific clinicopathologic parameters, it did not predict overall survival in this group. Assessment of p53 protein expression by immunocytochemistry provides a simple means to identify a subset of T3N0 patients with a 4-times increased risk for death.
Resumo:
Bone marrow-derived endothelial progenitor cells (EPCs) infiltrate into sites of neovascularization in adult tissues and mature into functional blood endothelial cells (BECs) during a process called vasculogenesis. Human marrow-derived EPCs have recently been reported to display a mixed myeloid and lymphatic endothelial cell (LEC) phenotype during inflammation-induced angiogenesis; however, their role in cancer remains poorly understood. We report the in vitro differentiation of human cord blood CD133(+)CD34(+) progenitors into podoplanin(+) cells expressing both myeloid markers (CD11b, CD14) and the canonical LEC markers vascular endothelium growth factor receptor 3 (VEGFR-3), lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), and prospero homeobox 1 (PROX-1). These podoplanin(+) cells displayed sprouting behavior comparable to that of LECs in vitro and a dual hemangiogenic and lymphangiogenic activity in vivo in an endothelial cell sprouting assay and corneal vascularization assay, respectively. Furthermore, these cells expressed vascular endothelium growth factor (VEGF) family members A, -C, and -D. Thus, bone-marrow derived EPCs stimulate hemangiogenesis and lymphangiogenesis through their ability to differentiate into LECs and to produce angiogenic factors. Importantly, plasma from patients with breast cancer induced differentiation of CD34(+) cord blood progenitors into hemangiogenic and lymphangiogenic CD11b(+) myeloid cells, whereas plasma from healthy women did not have this effect. Consistent with these findings, circulating CD11b(+) cells from breast cancer patients, but not from healthy women, displayed a similar dual angiogenic activity. Taken together, our results show that marrow-derived EPCs become hemangiogenic and lymphangiogenic upon exposure to cancer plasma. These newly identified functions of bone-marrow derived EPCs are expected to influence the diagnosis and treatment of breast cancer.
Resumo:
BACKGROUND: Letrozole radiosensitises breast cancer cells in vitro. In clinical settings, no data exist for the combination of letrozole and radiotherapy. We assessed concurrent and sequential radiotherapy and letrozole in the adjuvant setting. METHODS: This phase 2 randomised trial was undertaken in two centres in France and one in Switzerland between Jan 12, 2005, and Feb 21, 2007. 150 postmenopausal women with early-stage breast cancer were randomly assigned after conserving surgery to either concurrent radiotherapy and letrozole (n=75) or sequential radiotherapy and letrozole (n=75). Randomisation was open label with a minimisation technique, stratified by investigational centres, chemotherapy (yes vs no), radiation boost (yes vs no), and value of radiation-induced lymphocyte apoptosis (< or = 16% vs >16%). Whole breast was irradiated to a total dose of 50 Gy in 25 fractions over 5 weeks. In the case of supraclavicular and internal mammary node irradiation, the dose was 44-50 Gy. Letrozole was administered orally once daily at a dose of 2.5 mg for 5 years (beginning 3 weeks pre-radiotherapy in the concomitant group, and 3 weeks post-radiotherapy in the sequential group). The primary endpoint was the occurrence of acute (during and within 6 weeks of radiotherapy) and late (within 2 years) radiation-induced grade 2 or worse toxic effects of the skin. Analyses were by intention to treat. This study is registered with ClinicalTrials.gov, number NCT00208273. FINDINGS: All patients were analysed apart from one in the concurrent group who withdrew consent before any treatment. During radiotherapy and within the first 12 weeks after radiotherapy, 31 patients in the concurrent group and 31 in the sequential group had any grade 2 or worse skin-related toxicity. The most common skin-related adverse event was dermatitis: four patients in the concurrent group and six in the sequential group had grade 3 acute skin dermatitis during radiotherapy. At a median follow-up of 26 months (range 3-40), two patients in each group had grade 2 or worse late effects (both radiation-induced subcutaneous fibrosis). INTERPRETATION: Letrozole can be safely delivered shortly after surgery and concomitantly with radiotherapy. Long-term follow-up is needed to investigate cardiac side-effects and cancer-specific outcomes. FUNDING: Novartis Oncology France.
Resumo:
Tenascin-C is an adhesion-modulating extracellular matrix molecule that is highly expressed in tumor stroma and stimulates tumor cell proliferation. Adhesion of T98G glioblastoma cells to a fibronectin substratum is inhibited by tenascin-C. To address the mechanism of action, we performed a RNA expression analysis of T89G cells grown in the presence or absence of tenascin-C and found that tenascin-C down-regulates tropomyosin-1. Upon overexpression of tropomyosin-1, cell spreading on a fibronectin/tenascin-C substratum was restored, indicating that tenascin-C destabilizes actin stress fibers through down-regulation of tropomyosin-1. Tenascin-C also increased the expression of the endothelin receptor type A and stimulated the corresponding mitogen-activated protein kinase signaling pathway, which triggers extracellular signal-regulated kinase 1/2 phosphorylation and c-Fos expression. Tenascin-C additionally caused down-regulation of the Wnt inhibitor Dickkopf 1. In consequence, Wnt signaling was enhanced through stabilization of beta-catenin and stimulated the expression of the beta-catenin target Id2. Finally, our in vivo data derived from astrocytoma tissue arrays link increased tenascin-C and Id2 expression with high malignancy. Because increased endothelin and Wnt signaling, as well as reduced tropomyosin-1 expression, are closely linked to transformation and tumorigenesis, we suggest that tenascin-C specifically modulates these signaling pathways to enhance proliferation of glioma cells.
Resumo:
Peptides that interfere with the natural resistance of cancer cells to genotoxin-induced apoptosis may improve the efficacy of anticancer regimens. We have previously reported that a cell-permeable RasGAP-derived peptide (TAT-RasGAP(317-326)) specifically sensitizes tumor cells to genotoxin-induced apoptosis in vitro. Here, we examined the in vivo stability of a protease-resistant D-form of the peptide, RI.TAT-RasGAP(317-326), and its effect on tumor growth in nude mice bearing subcutaneous human colon cancer HCT116 xenograft tumors. After intraperitoneal injection, RI.TAT-RasGAP(317-326) persisted in the blood of nude mice for more than 1 hour and was detectable in various tissues and subcutaneous tumors. Tumor-bearing mice treated daily for 7 days with RI.TAT-RasGAP(317-326) (1.65 mg/kg body weight) and cisplatin (0.5 mg/kg body weight) or doxorubicin (0.25 mg/kg body weight) displayed reduced tumor growth compared with those treated with either genotoxin alone (n = 5-7 mice per group; P = .004 and P = .005, respectively; repeated measures analysis of variance [ANOVA, two-sided]). This ability of the RI.TAT-RasGAP(317-326) peptide to enhance the tumor growth inhibitory effect of cisplatin was still observed at peptide doses that were at least 150-fold lower than the dose lethal to 50% of mice. These findings provide the proof of principle that RI.TAT-RasGAP(317-326) may be useful for improving the efficacy of chemotherapy in patients.
Resumo:
Background Fatty acid synthase (FASN) is overexpressed and hyperactivated in several human carcinomas, including lung cancer. We characterize and compare the anti-cancer effects of the FASN inhibitors C75 and (−)-epigallocatechin-3-gallate (EGCG) in a lung cancer model. Methods We evaluated in vitro the effects of C75 and EGCG on fatty acid metabolism (FASN and CPT enzymes), cellular proliferation, apoptosis and cell signaling (EGFR, ERK1/2, AKT and mTOR) in human A549 lung carcinoma cells. In vivo, we evaluated their anti-tumour activity and their effect on body weight in a mice model of human adenocarcinoma xenograft. Results C75 and EGCG had comparable effects in blocking FASN activity (96,9% and 89,3% of inhibition, respectively). In contrast, EGCG had either no significant effect in CPT activity, the rate-limiting enzyme of fatty acid β-oxidation, while C75 stimulated CPT up to 130%. Treating lung cancer cells with EGCG or C75 induced apoptosis and affected EGFR-signaling. While EGCG abolished p-EGFR, p-AKT, p-ERK1/2 and p-mTOR, C75 was less active in decreasing the levels of EGFR and p-AKT. In vivo, EGCG and C75 blocked the growth of lung cancer xenografts but C75 treatment, not EGCG, caused a marked animal weight loss. Conclusions In lung cancer, inhibition of FASN using EGCG can be achieved without parallel stimulation of fatty acid oxidation and this effect is related mainly to EGFR signaling pathway. EGCG reduce the growth of adenocarcinoma human lung cancer xenografts without inducing body weight loss. Taken together, EGCG may be a candidate for future pre-clinical development.
Resumo:
A limited number of receptor tyrosine kinases (e.g., ErbB and fibroblast growth factor receptor families) have been genetically linked to breast cancer development. Here, we investigated the contribution of the Ret receptor tyrosine kinase to breast tumor biology. Ret was expressed in primary breast tumors and cell lines. In estrogen receptor (ER)alpha-positive MCF7 and T47D lines, the ligand (glial-derived neurotrophic factor) activated signaling pathways and increased anchorage-independent proliferation in a Ret-dependent manner, showing that Ret signaling is functional in breast tumor cells. Ret expression was induced by estrogens and Ret signaling enhanced estrogen-driven proliferation, highlighting the functional interaction of Ret and ER pathways. Furthermore, Ret was detected in primary cancers, and there were higher Ret levels in ERalpha-positive tumors. In summary, we showed that Ret is a novel proliferative pathway interacting with ER signaling in vitro. Expression of Ret in primary breast tumors suggests that Ret might be a novel therapeutic target in breast cancer.
Resumo:
BACKGROUND: Peroxisome proliferator activated receptors (PPARs) are nuclear hormone receptors involved in genetic control of many cellular processes. PPAR and PPAR have been implicated in colonic malignancy. Here we provide three lines of evidence suggesting an inhibitory role for PPAR in colorectal cancer development. METHODS: Levels of PPAR mRNA and protein in human colorectal cancers were compared with matched non-malignant mucosa using RNAse protection and western blotting. APC(Min)/+ mice were randomised to receive the PPAR activator methylclofenapate 25 mg/kg or vehicle for up to 16 weeks, and small and large intestinal polyps were quantified by image analysis. The effect of methylclofenapate on serum stimulated mitogenesis (thymidine incorporation), linear cell growth, and annexin V and propidium iodide staining were assessed in human colonic epithelial cells. RESULTS: PPAR (mRNA and protein) expression levels were significantly depressed in colorectal cancer compared with matched non-malignant tissue. Methylclofenapate reduced polyp area in the small intestine from 18.7 mm(2) (median (interquartile range 11.1, 26.8)) to 9.90 (4.88, 13.21) mm(2) (p=0.003) and in the colon from 9.15 (6.31, 10.5) mm(2) to 3.71 (2.71, 5.99) mm(2) (p=0.009). Methylclofenapate significantly reduced thymidine incorporation and linear cell growth with no effect on annexin V or propidium iodide staining. CONCLUSIONS: PPAR may inhibit colorectal tumour progression, possibly via inhibition of proliferation, and may be an important therapeutic target.
Resumo:
Medial prefrontal cortical areas have been hypothesized to underlie altered contextual processing in posttraumatic stress disorder (PTSD). We investigated brain signaling of contextual information in this disorder. Eighteen PTSD subjects and 16 healthy trauma-exposed subjects underwent a two-day fear conditioning and extinction paradigm. On day 1, within visual context A, a conditioned stimulus (CS) was followed 60% of the time by an electric shock (conditioning). The conditioned response was then extinguished (extinction learning) in context B. On day 2, recall of the extinction memory was tested in context B. Skin conductance response (SCR) and functional magnetic resonance imaging (fMRI) data were collected during context presentations. There were no SCR group differences in any context presentation. Concerning fMRI data, during late conditioning, when context A signaled danger, PTSD subjects showed dorsal anterior cingulate cortical (dACC) hyperactivation. During early extinction, when context B had not yet fully acquired signal value for safety, PTSD subjects still showed dACC hyperactivation. During late extinction, when context B had come to signal safety, they showed ventromedial prefrontal cortex (vmPFC) hypoactivation. During early extinction recall, when context B signaled safety, they showed both vmPFC hypoactivation and dACC hyperactivation. These findings suggest that PTSD subjects show alterations in the processing of contextual information related to danger and safety. This impairment is manifest even prior to a physiologically-measured, cue-elicited fear response, and characterized by hypoactivation in vmPFC and hyperactivation in dACC.
Resumo:
Background Transketolase-like 1 (TKTL1) induces glucose degradation through anaerobic pathways, even in presence of oxygen, favoring the malignant aerobic glycolytic phenotype characteristic of tumor cells. As TKTL1 appears to be a valid biomarker for cancer prognosis, the aim of the current study was to correlate its expression with tumor stage, probability of tumor recurrence and survival, in a series of colorectal cancer patients. Methodolody/Principal Findings Tumor tissues from 63 patients diagnosed with colorectal cancer at different stages of progression were analyzed for TKTL1 by immunohistochemistry. Staining was quantified by computational image analysis, and correlations between enzyme expression, local growth, lymph-node involvement and metastasis were assessed. The highest values for TKTL1 expression were detected in the group of stage III tumors, which showed significant differences from the other groups (Kruskal-Wallis test, P = 0.000008). Deeper analyses of T, N and M classifications revealed a weak correlation between local tumor growth and enzyme expression (Mann-Whitney test, P = 0.029), a significant association of the enzyme expression with lymph-node involvement (Mann-Whitney test, P = 0.0014) and a significant decrease in TKTL1 expression associated with metastasis (Mann-Whitney test, P = 0.0004). Conclusions/Significance To our knowledge, few studies have explored the association between variations in TKTL1 expression in the primary tumor and metastasis formation. Here we report downregulation of enzyme expression when metastasis appears, and a correlation between enzyme expression and regional lymph-node involvement in colon cancer. This finding may improve our understanding of metastasis and lead to new and more efficient therapies against cancer.
Resumo:
Résumé: Pratiquement tous les cancers du colon contiennent des mutations dans la voie de signalisation de Wnt qui active constitutivement cette voie. Cette activation mène à la stabilisation de la β-catenine. La β-catenin est transportée dans le noyau ou elle active des gènes cible en interagissant avec le facteur de transcription de TCF/LEF. Des adénovirus qui peuvent sélectivement se répliquer dans les cellules tumorales sont les agents qui peuvent permettre la déstruction de la tumeur mais pas le tissu normal. In vitro, les adénovirus avec des sites d'attachement du facteur de transcription TCF dans les promoteurs de l'adénovirus montrent une sélectivité et une activité dans une large sélection de lignées cellulaires de cancer du colon. Au contraire, in vivo, quand les adénovirus modifiés sont injectés dans la circulation, ils sont moins efficaces à cause de leur fixation par le foie et à cause de l'absence d'expression du récepteur du Coxsackie-Adénovirus (CAR). Le but de ma thèse était de modifier la protéine principale de capside de l'adénovirus, fibre, pour augmenter l'infection des tumeurs du cancer du colon. La fibre de l'adénovirus est responsable de l'attachement aux cellules et de l'entrée virale. J'ai inséré un peptide RGD dans la boucle HI de la fibre qui dirige sélectivement le virus aux récepteurs des integrines. Les integrines sont surexprimées par les cellules du cancer du colon et l'endothélium des vesseaux de la tumeur. Le virus re-ciblé, vKH6, a montré une activité accrue dans toutes les lignées cellulaires de cancer du colon, tandis que la sélectivité était maintenue. In vivo, vKH6 était supérieur au virus avec une capside de type sauvage en retardant la croissance de la tumeur. Le virus s'est répliqué plus vite et dispersé graduellement dans la tumeur. Cet effet a été montré par hybridation in situ et par PCR quantitative. Cependant, la monothérapie avec le virus n'a pu retarder la croissance des cellules tumorales SW620 greffées que de 2 semaines, mais à cause des régions non infectées la tumeur n'a pas pu être éliminée. Bien que la combinaison avec les chimiothérapies conventionnelles soit d'intérêt potentiel, presque toutes interfèrent avec la réplication virale. Les drogues antiangiogéniques sont des agents anti-tumoraux efficaces et prometteurs. Ces drogues n'interfèrent pas avec le cycle de vie de l'adénovirus. RAD001 est un dérivé de la rapamycine et il inhibe mTOR, une protéine kinase de la voie de PI3K. RAD001 empêche la croissance des cellules et il a aussi des effets anti-angiogénique et immunosuppressifs. RAD001 in vitro n'affecte pas l'expression des gènes viraux et la production virale. La combinaison de VKH6 et RAD001 in vivo a un effet additif en retardant la croissance de la tumeur. Des nouveaux peptides plus efficaces dans le ciblage de l'adénovirus sont nécessaires pour augmenter l'infection des tumeurs. J'ai créé un système de recombinaison qui permettra la sélection de nouveaux peptides dans le contexte du génome de l'adénovirus. Summary Virtually all colon cancers have mutations in the Wnt signalling pathway which result in the constitutive activation of the pathway. This activation leads to stabilization of β-catenin. β-catenin enters the nucleus and activates its target genes through interaction with the TCF transcription factor. Selectively replicating adenoviruses are promising novel agents that can destroy the tumour but not the surrounding normal tissue. In vitro, adenoviruses with TCF binding sites in the early viral promoters show selectivity and activity in a broad panel of viruses but in vivo they are less effective due to the lack of expression of the Coxsackie-Adenovirus receptor (CAR). The aim of my thesis was to modify the major capsid protein of the adenovirus, fibre, to increase the infection of colon tumours. Fibre of adenovirus is responsible for the binding to cells and for the viral uptake. I inserted an RGD binding peptide into the HI loop of fibre that selectively targets the virus to integrins that are overexpressed on tumour cells and on tumour endothelium. The retargeted virus, vKH6, showed increased activity in all colon cancer cell lines while selectivity was maintained. In vivo, vKH6 is superior to a matched virus with a wild type capsid in delaying tumour growth. vKH6 replicates and gradually spreads within the tumour as shown by in situ hybridization and Q-PCR. The virus alone can delay the growth of SW620 xenografts by 2 weeks but due to uninfected tumour regions the tumour cannot be cured. Although combination with conventional chemotherapeutics is of potential interest, almost all of them interfere with the viral replication. Growing evidence supports that anti-angiogenic drugs are effective and promising anti-tumour agents. These drugs interfere less with the viral life cycle. RAD001 is a rapamycin derivative and it blocks mTOR, a protein kinase in the PI3K pathway. RAD001 inhibits cell growth and has strong anti-angiogenic and immunosuppressive effects. RAD001 in vitro does not affect viral gene expression and viral burst size. In vivo vKH6 and RAD001 have an additive effect in delaying tumour growth, but tumour growth is still not completely inhibited. To further increase tumour infection new tumour specific targeting peptides are needed. I created an adenovirus display library that will allow the selection of targeting peptides. This system may also facilitate the production of fibre modified viruses.
Resumo:
Intrinsic resistance to the epidermal growth factor receptor (EGFR; HER1) tyrosine kinase inhibitor (TKI) gefitinib, and more generally to EGFR TKIs, is a common phenomenon in breast cancer. The availability of molecular criteria for predicting sensitivity to EGFR-TKIs is, therefore, the most relevant issue for their correct use and for planning future research. Though it appears that in non-small-cell lung cancer (NSCLC) response to gefitinib is directly related to the occurrence of specific mutations in the EGFR TK domain, breast cancer patients cannot be selected for treatment with gefitinib on the same basis as such EGFR mutations have beenreported neither in primary breast carcinomas nor in several breast cancer cell lines. Alternatively, there is a generalagreement on the hypothesis that the occurrence of molecular alterations that activate transduction pathways downstreamof EGFR (i.e., MEK1/MEK2 - ERK1/2 MAPK and PI-3'K - AKT growth/survival signaling cascades) significantly affect the response to EGFR TKIs in breast carcinomas. However,there are no studies so far addressing a role of EGF-related ligands as intrinsic breast cancer cell modulators of EGFR TKIefficacy. We recently monitored gene expression profiles andsub-cellular localization of HER-1/-2/-3/-4 related ligands (i.e., EGF, amphiregulin, transforming growth factor-α, ß-cellulin,epiregulin and neuregulins) prior to and after gefitinib treatment in a panel of human breast cancer cell lines. First, gefitinibinduced changes in the endogenous levels of EGF-related ligands correlated with the natural degree of breast cancer cellsensitivity to gefitinib. While breast cancer cells intrinsically resistant to gefitinib (IC50 ≥15 μM) markedly up-regulated(up to 600 times) the expression of genes codifying for HERspecific ligands, a significant down-regulation (up to 106 times)of HER ligand gene transcription was found in breast cancer cells intrinsically sensitive to gefitinib (IC50 ≤1 μM). Second,loss of HER1 function differentially regulated the nuclear trafficking of HER-related ligands. While gefitinib treatment induced an active import and nuclear accumulation of the HER ligand NRG in intrinsically gefitinib-resistant breastcancer cells, an active export and nuclear loss of NRG was observed in intrinsically gefitinib-sensitive breast cancer cells.In summary, through in vitro and pharmacodynamic studies we have learned that, besides mutations in the HER1 gene,oncogenic changes downstream of HER1 are the key players regulating gefitinib efficacy in breast cancer cells. It now appears that pharmacological inhibition of HER1 functionalso leads to striking changes in both the gene expression and the nucleo-cytoplasmic trafficking of HER-specific ligands,and that this response correlates with the intrinsic degree of breast cancer sensitivity to the EGFR TKI gefitinib. Therelevance of this previously unrecognized intracrine feedback to gefitinib warrants further studies as cancer cells could bypassthe antiproliferative effects of HER1-targeted therapeutics without a need for the overexpression and/or activation of other HER family members and/or the activation of HER-driven downstream signaling cascades
Cognitive Predictors and Risk Factors of PTSD Following Stillbirth: A Short-Term Longitudinal Study.
Resumo:
This short-term longitudinal study investigated cognitive predictors and risk factors of posttraumatic stress disorder (PTSD) in mothers following stillbirth. After a stillbirth at ≥ 24 weeks gestational age, 65 women completed structured clinical interviews and questionnaires assessing PTSD symptoms, cognitive predictors (appraisals, dysfunctional strategies), and risk factors (perceived social support, trauma history, obstetric history) at 3 and 6 months. PTSD symptoms decreased between 3 and 6 months (Cohen's d ranged .34-.52). Regression analyses also revealed a specific positive relationship between Rumination and concurrent frequency of PTSD symptoms (β = .45). Negative Self-View and Negative World-View related positively and Self-Blame related negatively to concurrent number of PTSD symptoms (β = .48, .44, -.45, respectively). Suppression and Distraction predicted a decrease and Numbing predicted an increase in time-lagged number of PTSD symptoms (β = -.33, -.28, .30, respectively). Risk factors for PTSD symptoms were younger age (β = -.25), lower income (β = -.29), fewer previous pregnancies (β = -.31), and poorer perceived social support (β = -.26). Interventions addressing negative appraisals, dysfunctional strategies, and social support are recommended for mothers with PTSD following stillbirth. Knowledge of cognitive predictors and risk factors of PTSD may inform the development of a screening instrument.