953 resultados para Cal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a decadal-scale late Holocene climate record based on diatoms, biogenic silica, and grain size from a 12-m sediment core (VEC02A04) obtained from Frederick Sound in the Seymour-Belize Inlet Complex of British Columbia, Canada. Sediments are characterized by graded, massive, and laminated intervals. Laminated intervals are most common between c. 2948–2708 cal. yr BP and c. 1992–1727 cal. yr BP. Increased preservation of laminated sediments and diatom assemblage changes at this time suggest that cli- mate became moderately drier and cooler relative to the preceding and succeeding intervals. Spectral and wavelet analyses are used to test for statistically significant periodicities in time series of proxies of primary production (total diatom abundance, biogenic silica) and hydrology (grain size) preserved in the Frederick Sound record. Periodicities of c. 42–53, 60–70, 82–89, 241–243, and 380 yrs are present. Results are com- pared to reconstructed sunspot number data of Solanki et al. (2004) using cross wavelet transform to evalu- ate the role of solar forcing on NE Pacific climate. Significant common power of periodicities between c. 42– 60, 70–89, 241–243, and of 380 yrs occur, suggesting that celestial forcing impacted late Holocene climate at Frederick Sound. Replication of the c. 241–243 yr periodicity in sunspot time series is most pronounced be- tween c. 2900 cal. yr BP and c. 2000 cal. yr BP, broadly correlative to the timing of maximum preservation of laminated sedimentary successions and diatom assemblage changes. High solar activity at the Suess/de Vries band may have been manifested as a prolonged westward shift and/or weakening of the Aleutian Low in the mid-late Holocene, which would have diverted fewer North Pacific storms and resulted in the relatively dry conditions reconstructed for the Seymour-Belize Inlet Complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tephras are important for the NZ-INTIMATE project because they link all three records comprising the composite inter-regional stratotype developed for the New Zealand climate event stratigraphy (NZ-CES). Here we firstly report new calendar ages for 24 widespread marker tephras erupted since 30,000 calendar (cal.) years ago in New Zealand to help facilitate their use as chronostratigraphic dating tools for the NZ-CES and for other palaeoenvironmental and geological applications. The selected tephras comprise 12 rhyolitic tephras from Taupo, nine rhyolitic tephras from Okataina, one peralkaline rhyolitic tephra from Tuhua, and one andesitic tephra each from Tongariro and Egmont/Taranaki volcanic centres. Age models for the tephras were obtained using three methods: (i) C-based wiggle-match dating of wood from trees killed by volcanic eruptions (these dates published previously); (ii) flexible depositional modelling of a high-resolution C-dated age-depth sequence at Kaipo bog using two Bayesian-based modelling programs, Bacon and OxCal's P_Sequence function, and the IntCal09 data set (with SH offset correction-44±17yr); and (iii) calibration of C ages using OxCal's Tau_Boundary function and the SHCal04 and IntCal09 data sets. Our preferred dates or calibrated ages for the 24 tephras are as follows (youngest to oldest, all mid-point or mean ages of 95% probability ranges): Kaharoa AD 1314±12; Taupo (Unit Y) AD 232±10; Mapara (Unit X) 2059±118cal.yrBP; Whakaipo (Unit V) 2800±60cal.yrBP; Waimihia (Unit S) 3401±108cal.yrBP; Stent (Unit Q) 4322±112cal.yrBP; Unit K 5111±210cal.yrBP; Whakatane 5526±145cal.yrBP; Tuhua 6577±547cal.yrBP; Mamaku 7940±257cal.yrBP; Rotoma 9423±120cal.yrBP; Opepe (Unit E) 9991±160cal.yrBP; Poronui (Unit C) 11,170±115cal.yrBP; Karapiti (Unit B) 11,460±172cal.yrBP; Okupata 11,767±192cal.yrBP; Konini (bed b) 11,880±183cal.yrBP; Waiohau 14,009±155cal.yrBP; Rotorua 15,635±412cal.yrBP; Rerewhakaaitu 17,496±462cal.yrBP; Okareka 21,858±290cal.yrBP; Te Rere 25,171±964cal.yrBP; Kawakawa/Oruanui 25,358±162cal.yrBP; Poihipi 28,446±670cal.yrBP; and Okaia 28,621±1428cal.yrBP.Secondly, we have re-dated the start and end of the Lateglacial cool episode (climate event NZce-3 in theNZ-CES), previously referred to as the Lateglacial climate reversal, as defined at Kaipo bog in eastern North Island, New Zealand, using both Bacon and OxCal P_Sequence modelling with the IntCal09 data set. The ca1200-yr-long cool episode, indicated by a lithostratigraphic change in the Kaipo peat sequence to grey mudwith lowered carbon content, and a high-resolution pollen-derived cooling signal, began 13,739±125cal.yrBP and ended 12,550±140cal.yrBP (mid-point ages of the 95% highest posterior density regions, Bacon modelling). The OxCal modelling, generating almost identical ages, confirmed these ages. The Lateglacial cool episode (ca 13.8-12.6cal.kaBP) thus overlaps a large part of the entire Antarctic Cold Reversal chronozone (ca 14.1-12.4cal.kaBP or ca 14.6-12.8cal.kaBP), and an early part of the Greenland Stadial-1 (Younger Dryas) chronozone (ca 12.9-11.7cal.kaBP). The timing of the Lateglacial cool episode at Kaipo is broadly consistent with the latitudinal patterns in the Antarctic Cold Reversal signal suggested for the New Zealand archipelago from marine and terrestrial records, and with records from southern South America. © 2012 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our review of paleoclimate information for New Zealand pertaining to the past 30,000 years has identified a general sequence of climatic events, spanning the onset of cold conditions marking the final phase of the Last Glaciation, through to the emergence to full interglacial conditions in the early Holocene. In order to facilitate more detailed assessments of climate variability and any leads or lags in the timing of climate changes across the region, a composite stratotype is proposed for New Zealand. The stratotype is based on terrestrial stratigraphic records and is intended to provide a standard reference for the intercomparison and evaluation of climate proxy records. We nominate a specific stratigraphic type record for each climatic event, using either natural exposure or drill core stratigraphic sections. Type records were selected on thebasis of having very good numerical age control and a clear proxy record. In all cases the main proxy of the type record is subfossil pollen. The type record for the period from ca 30 to ca 18 calendar kiloyears BP (cal. ka BP) is designated in lake-bed sediments from a small morainic kettle lake (Galway tarn) in western South Island. The Galway tarn type record spans a period of full glacial conditions (Last Glacial Coldest Period, LGCP) within the Otira Glaciation, and includes three cold stadials separated by two cool interstadials. The type record for the emergence from glacial conditions following the termination of the Last Glaciation (post-Termination amelioration) is in a core of lake sediments from a maar (Pukaki volcanic crater) in Auckland, northern North Island, and spans from ca 18 to 15.64±0.41 cal. ka BP. The type record for the Lateglacial period is an exposure of interbedded peat and mud at montane Kaipo bog, eastern North Island. In this high-resolution type record, an initial mild period was succeeded at 13.74±0.13 cal. ka BP by a cooler period, which after 12.55±0.14 cal. ka BP gave way to a progressive ascent to full interglacial conditions that were achieved by 11.88±0.18 cal. ka BP. Although a type section is not formally designated for the Holocene Interglacial (11.88±0.18 cal. ka BP to the present day), the sedimentary record of Lake Maratoto on the Waikato lowlands, northwestern North Island, is identified as a prospective type section pending the integration and updating of existing stratigraphic and proxy datasets, and age models. The type records are interconnected by one or more dated tephra layers, the ages of which are derived from Bayesian depositional modelling and OxCal-based calibrations using the IntCal09 dataset. Along with the type sections and the Lake Maratoto record, important, well-dated terrestrial reference records are provided for each climate event. Climate proxies from these reference records include pollen flora, stable isotopes from speleothems, beetle and chironomid fauna, and glacier moraines. The regional composite stratotype provides a benchmark against which to compare other records and proxies. Based on the composite stratotype, we provide an updated climate event stratigraphic classification for the New Zealand region. © 2013 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report tephrochronological and geochemical data on early Holocene activity from Plosky volcanic massif in the Kliuchevskoi volcanic group, Kamchatka Peninsula. Explosive activity of this volcano lasted for similar to 1.5 kyr, produced a series of widely dispersed tephra layers, and was followed by profuse low-viscosity lava flows. This eruptive episode started a major reorganization of the volcanic structures in the western part of the Kliuchevskoi volcanic group. An explosive eruption from Plosky (M similar to 6), previously unstudied, produced tephra (coded PL2) of a volume of 10-12 km(3) (11-13 Gt), being one of the largest Holocene explosive eruptions in Kamchatka. Characteristic diagnostic features of the PL2 tephra are predominantly vitric sponge-shaped fragments with rare phenocrysts and microlites of plagioclase, olivine and pyroxenes, medium- to high-K basaltic andesitic bulk composition, high-K, high-Al and high-P trachyandesitic glass composition with SiO2 = 57.5-59.5 wt%, K2O = 2.3-2.7 wt%, Al2O3 = 15.8-16.5 wt%, and P2O5 = 0.5-0.7 wt%. Other diagnostic features include a typical subduction-related pattern of incompatible elements, high concentrations of all REE (> 10x mantle values), moderate enrichment in LREE (La/Yb similar to 5.3), and non-fractionated mantle-like pattern of LILE. Geochemical fingerprinting of the PL2 tephra with the help of EMP and LA-ICP-MS analyses allowed us to map its occurrence in terrestrial sections across Kamchatka and to identify this layer in Bering Sea sediment cores at a distance of > 600 km from the source. New high-precision C-14 dates suggest that the PL2 eruption occurred similar to 10,200 cal BP, which makes it a valuable isochrone for early Holocene climate fluctuations and permits direct links between terrestrial and marine paleoenvironmental records. The terrestrial and marine C-14 dates related to the PL2 tephra have allowed us to estimate an early Holocene reservoir age for the western Bering Sea at 1,410 +/- A 64 C-14 years. Another important tephra from the early Holocene eruptive episode of Plosky volcano, coded PL1, was dated at 11,650 cal BP. This marker is the oldest geochemically characterized and dated tephra marker layer in Kamchatka to date and is an important local marker for the Younger Dryas-early Holocene transition. One more tephra from Plosky, coded PL3, can be used as a marker northeast of the source at a distance of similar to 110 km.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT

The start of the Upper Wurmian in the Alps was marked by massive fluvioglacial aggradation prior to the arrival of the Central Alpine glaciers. In 1984, the Subcommission on European Quaternary Stratigraphy defined the clay pit of Baumkirchen (in the foreland of the Inn Valley, Austria) as the stratotype for the Middle to Upper Wurmian boundary in the Alps. Key for the selection of this site was its radiocarbon chronology, which still ranks among the most important datasets of this time interval in the Alps. In this study we re-sampled all available original plant specimens and established an accelerator mass spectrometry chronology which supersedes the published 40-year-old chronology. The new data show a much smaller scatter and yielded slightly older conventional radiocarbon dates clustering at ca. 31 C-14 ka BP. When calibrated using INTCAL13 the new data suggest that the sampled interval of 653-681 m in the clay pit was deposited 34-36 cal ka BP. Using two new radiocarbon dates of bone fragments found in the fluvioglacial gravel above the banded clays allows us to constrain the timing of the marked change from lacustrine to fluvioglacial sedimentation to ca. 32-33 cal ka BP, which suggests a possible link to the Heinrich 3 event in the North Atlantic. Copyright (c) 2013 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Cederberg Mountains (Western Cape Province, South Africa) are located within the Fynbos Biome, which exhibits some of the highest levels of species richness and endemism in the world. The region's post-glacial vegetation history, however, remains largely unknown. Presented here are high resolution pollen and microcharcoal records spanning the last 15,600 years obtained from the De Rif rock hyrax midden from the Driehoek Valley of the central Cederberg. In this region, previous pollen studies have shown muted variability in vegetation community composition during periods of globally marked climatic variability (e.g. the last glacial-interglacial transition). In our record, however, significant changes in vegetation composition are apparent. Most notably, they indicate a shift from ericaceous/restioid fynbos (present from 15,600 to 13,300 cal yr BP) to a brief, but prominent, development of proteoid fynbos at the beginning of the Holocene around 11,200 cal yr BP. This vegetation shift is associated with increased moisture at the site, and coincides with reduced fire frequency as indicated by the microcharcoal record. At 10,400 cal yr BP, there is a marked reduction in Protea-type pollen, which is replaced by thicket, characterised by Dodonaea, which became the dominant arboreal pollen type. This shift was likely the result of a long relatively fire-free period coupled with warmer and wetter climates spanning much of the early Holocene. A brief but marked decrease in water availability around 8500-8000 cal yr BP resulted in the strong decrease of Dodonaea pollen. The vegetation of the mid- to late Holocene is characterised by the increased occurrence of Asteraceae and succulent taxa, suggesting substantially drier conditions. These data give unprecedented insight into the vegetation dynamics across a period of substantial, rapid climate change, and while they confirm the presence of fynbos elements throughout the last 15,600 years, the results highlight significant fluctuations in the vegetation that were triggered by changes in both climate and fire regimes. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A significant cold event, deduced from the Greenland ice cores, took place between 8200 and 8000 cal. BP. Modeling of the event suggests that higher northern latitudes would have also experienced considerable decreases in precipitation and that Ireland would have witnessed one of the greatest depressions. However, no well-dated proxy record exists from the British Isles to test the model results. Here we present independent evidence for a phase of major pine recruitment on Irish bogs at around 8150 cal. BP. Dendrochronological dating of subfossil trees from three sites reveal synchronicity in germination across the region, indicative of a regional forcing, and allows for high-precision radiocarbon based dating. The inner-rings of 40% of all samples from the north of Ireland dating to the period 8500-7500 cal. BP fall within a 25-yr window. The concurrent colonization of pine on peatland is interpreted as drier conditions in the region and provides the first substantive proxy data in support of a significant hydrological change in the north of Ireland accompanying the 8.2 ka event. The dating uncertainties associated with the Irish pine record and the Greenland Ice Core Chronology 2005 (GICC05) do not allow for any overlap between the two. Our results indicate that the discrepancy could be an artifact of dating inaccuracy, and support a similar claim by Lohne et al. (2013) for the Younger Dryas boundaries. If real, this asynchrony will most likely have affected interpretations of previous proxy alignments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyzed subfossil chironomids, sediment organic matter and sediment particle size data from a 1.11-m-long freeze core collected from Carleton Lake (unofficial name), located approximately 120 km north of the modern treeline. This well-dated core spans the last ca. 6,500 years. Two chironomid transfer functions were applied to infer mean July air temperatures. Our results indicated that the chironomid-inferred temperatures from this lake sediment record did not pass a significance test, suggesting that other factors in addition to temperature may have been important in structuring the chironomid community through time. Although not statistically significant, the chironomid-inferred temperatures from this site do follow a familiar pattern, with highest inferred temperatures occurring during the Holocene Thermal Maximum (~6–4 cal kyr BP), followed by a long-term cooling trend, which is reversed during the last 600 years. The largest change in the chironomid assemblage, which occurred between ca. 4,600 and 3,900 cal yr BP is possibly related to the well-documented northward advance and subsequent retreat of treeline in this region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The acquisition of high quality, well-dated local site records is essential for progressing regional environmental reconstructions. As part of a wider study designed to examine intra- and extra- site ecosystem responses to environmental change, this paper presents new palaeoecological data from the floodplain of the River Torne in the Humberhead Levels, South Yorkshire. The sampling site lies adjacent to the lowland raised mire of Hatfield Moors, a location with a long history of palaeoecological investigations. The potential of using floodplain records to reconstruct local variations in ecosystem response to environmental change is also considered. Coleoptera and pollen are used to reconstruct floodplain ecosystem dynamics, whilst chronologies are established using Bayesian age–depth modelling. Between 10,200 cal BP and 2300 cal BP, the floodplain experienced multiple phases of ecological change. At 10,200–9910 cal BP, a cut-off channel began to infill with peat, while the surrounding floodplain remained relatively dry with Pinus forest growing nearby. Between 9630–9500 cal BP and 7270–7020 cal BP, a depositional hiatus occurred in the sedimentary record. By the end of this period, the local woodland had diversified and expanded to mixed deciduous tree cover. A wet shift identified at 6870–6160 cal BP was shortly followed by a rise in Alnus and Tilia from 6410–6160 cal BP. At this time, widespread floodplain paludification had occurred in the Humberhead Levels, which was largely controlled by relative sea-level (RSL) rise and the associated rise in regional water tables. Floodplain expansion also resulted in the widespread occurrence of Alnus dominated fen woodland. The local Torne floodplain experienced varying levels of wetness that influenced the decline and subsequent regeneration of the woodland from 5870–5640 cal BP. At this time, the Ulmus decline is identified in the pollen stratigraphic record. Floodplain hydrology appears to have been controlled by a combination of water table fluctuations and changes in channel pattern/flow, both of which can be linked to RSL variations recorded in the Humber Estuary. Floodplain alluviation, also linked to rising water tables, is dated to 4360–4160 cal BP. Anthropogenic woodland clearance further upstream may have further compounded this event.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A significant cold event, derived from the Greenland ice cores, took place between 8200 and 8000 cal. BP. Modeling of the event suggests that higher northern latitudes would have experienced considerable decreases in precipitation and that Ireland would have witnessed one of the greatest depressions. However, no well-dated proxy record exists from the British Isles to test the model results. Here we present independent evidence for a phase of major pine recruitment on Irish bogs at around 8150 cal. BP. Dendrochronological dating of subfossil trees from three sites reveal synchronicity in germination across the region, indicative of a regional forcing, and allows for high-precision radiocarbon based dates. The inner-rings of 40% of all samples from the north of Ireland dating to the period 8,500-7,500 cal. BP fall within a 25-year window. The concurrent colonization of pine on peatland is interpreted as drier conditions in the region and provide the first substantive proxy data in support of a significant hydrological change in the north of Ireland accompanying the 8.2 ka event. Our results also indicate that the apparent temporal asynchrony between anomalies in proxy records at the time could be a result of differences in dating methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A pivotal cold event, deduced from the Greenland ice cores, took place between 8200 and 8000 cal. BP. Modelling of this climatic episode suggests that higher northern latitudes would have also experienced substantial reduction in rainfall and that Ireland would have observed a notable decline. No well-dated proxy record exists from the British Isles to test the model results. We present significant independent data for a phase of increased Scots pine initiation on Irish bogs at around 8150 cal. BP. Dendrochronological dating of sub-fossil Scots pine trees from three locations reveals synchronicity in germination across the area, indicative of a regional forcing, and allows for high-precision radiocarbon based dates. The starting rings of 40% of all samples from the north of Ireland dating to the period 8500-7500 cal. BP fall within a period of 25 years. The present colonisation model of Scots pine on peatland is interpreted as increasing drier conditions in the region and provides the first meaningful proxy data in support of a significant hydrological change in the north of Ireland accompanying the 8.2 ka event. The dating uncertainties associated with the Irish Scots pine record and the Greenland Ice Core Chronology 2005 (GICC05) do not allow for any overlap between the two. The results indicate that the discrepancy could be a result of dating inaccuracy that could have affected analysis of prior proxy alignments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A late Pleistocene vegetation record is presented, using multi-proxy analysis from three palaeochannels in the northern (Bario) and southern (Pa'Dalih) Kelabit Highlands of Sarawak, Malaysian Borneo. Before 50 000 cal a BP and until approximate to 47 700 cal a BP [marine isotope stage 3 (MIS3)], two of the sites were probably being influenced by energetic fluvial deposition, possibly associated with strong seasonality. Fluvial activity declines between 47 700 and 30 000 cal a BP (MIS3), and may be associated with a reduction in seasonality with overall stability in precipitation. The pollen record between 47 700 and 30 000 cal a BP generally shows much higher representation of upper-montane taxa compared with the Holocene, indicating often significantly reduced temperatures. After 35 000-30 000 cal a BP and until the mid-Holocene, hiatuses appear in two of the records, which could be linked to fluvial down-cutting during the late/mid Holocene. Despite the jump in ages, a pronounced representation of Ericaceae and upper-montane taxa, represented both at Bario and at Pa'Dalih, corresponds to a further lowering of temperatures during the Last Glacial Maximum (MIS2). Thick charcoal bands in the PDH 210 record also suggest periods of extreme aridity between 30 200 and 12 700 cal a BP. This is followed by energetic fluvial deposition of sands and gravels, and may reflect a significant increase in seasonality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has often been assumed that the islands of Orkney were essentially treeless throughout much of the Holocene, with any ‘scrub’ woodland having been destroyed by Neolithic farming communities by around 3500 cal. BC. This apparently open, hyper-oceanic environment would presumably have provided quite marginal conditions for human settlement, yet Neolithic communities flourished and the islands contain some of the most spectacular remains of this period in north-west Europe. The study of new Orcadian pollen sequences, in conjunction with the synthesis of existing data, indicates that the timing of woodland decline was not synchronous across the archipelago, beginning in the Mesolithic, and that in some areas woodland persisted into the Bronze Age. There is also evidence to suggest that woodland communities in Orkney were more diverse, and therefore that a wider range of resources was available to Neolithic people, than has previously been assumed. Recent archaeological investigations have revealed evidence for timber buildings at early Neolithic settlement sites, suggesting that the predominance of stone architecture in Neolithic Orkney may not have been due to a lack of timber as has been supposed. Rather than simply reflecting adaptation to resource constraints, the reasons behind the shift from timber to stone construction are more complex and encompass social, cultural and environmental factors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The emerging tephrostratigraphy of NW Europe spanning the last termination (ca. 15–9 ka) provides the potential for synchronizing marine, ice-core and terrestrial records, but is currently compromised by stratigraphic complications, geochemical ambiguity and imprecise age estimates for some layers. Here we present new tephrostratigraphic, radiocarbon and chironomid-based
palaeotemperature data from Abernethy Forest, Scotland, that refine the ages and stratigraphic positions of the Borrobol and Penifiler tephras. The Borrobol Tephra (14.14–13.95 cal ka BP) was deposited in a relatively warm period equated with Greenland Interstadial sub-stage GI-1e. The younger Penifiler Tephra (14.09–13.65 cal ka BP) is closely associated with a cold oscillation equated with GI-
1d. We also present evidence for a previously undescribed tephra layer that has a major-element chemical signature identical to the Vedde Ash. It is associated with the warming trend at the end of the Younger Dryas, and dates between 11.79 and 11.20 cal ka BP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With security and surveillance, there is an increasing need to be able to process image data efficiently and effectively either at source or in a large data networks. Whilst Field Programmable Gate Arrays have been seen as a key technology for enabling this, they typically use high level and/or hardware description language synthesis approaches; this provides a major disadvantage in terms of the time needed to design or program them and to verify correct operation; it considerably reduces the programmability capability of any technique based on this technology. The work here proposes a different approach of using optimised soft-core processors which can be programmed in software. In particular, the paper proposes a design tool chain for programming such processors that uses the CAL Actor Language as a starting point for describing an image processing algorithm and targets its implementation to these custom designed, soft-core processors on FPGA. The main purpose is to exploit the task and data parallelism in order to achieve the same parallelism as a previous HDL implementation but avoiding the design time, verification and debugging steps associated with such approaches.