973 resultados para Cadmium(ii) Complexes
Resumo:
A series of novel macrocyclic tetraaza ligands that incorporate a naphthalene moiety as a photoactive chromophore have been prepared and structurally characterized as their Cu(II) complexes. Variable-temperature photophysical studies have concluded that the luminescence quenching evident in the Cu(H) complexes is due to intramolecular electronic energy transfer (EET). In their free-base forms, these ligands undergo reductive luminescence quenching via photoinduced electron transfer (PET) reactions, with proximate amine lone pairs acting as electron donors. Consequently, the emission behavior can be modulated by variations in pH and/or the presence of other Lewis acids such as Zn(H).
Resumo:
The temperature dependence of the X- and Q-band EPR spectra of Cs-2[Zn(H2O)(6)](ZrF6)(2) containing similar to1% Cu2+ is reported. All three molecular g-values vary with temperature, and their behavior is interpreted using a model in which the potential surface of the Jahn-Teller distorted Cu(H2O)(6)(2+) ion is perturbed by an orthorhombic strain induced by interactions with the surrounding lattice. The strain parameters are significantly smaller than those reported previously for the Cu(H2O)(6)(2+) ion in similar lattices. The temperature dependence of the two higher g-values suggests that in the present compound the lattice interactions change slightly with temperature. The crystal structure of the Cs-2[Zn(H2O)(6)](ZrF6)(2) host is reported, and the geometry of the Zn(H2O)(6)(2+) ion is correlated with lattice strain parameters derived from the EPR spectrum of the guest Cu2+ complex.
Resumo:
5-Monocyclopentadienyliron(II)/ruthenium(II) complexes of the general formula [M(5-C5H5)(PP)(L1)][PF6] {M = Fe, PP = dppe; M = Ru, PP = dppe or 2PPh3; L1 = 5-[3-(thiophen-2-yl)benzo[c]thiophenyl]thiophene-2-carbonitrile} have been synthesized and studied to evaluate their molecular quadratic hyperpolarizabilities. The compounds were fully characterized by NMR, FTIR and UV/Vis spectroscopy and their electrochemical behaviour studied by cyclic voltammetry. Quadratic hyperpolarizabilities () were determined by hyper-Rayleigh scattering measurements at a fundamental wavelength of 1500 nm. Density functional theory calculations were employed to rationalize the second-order non-linear optical properties of these complexes.
Resumo:
Dissertation presented to obtain the Ph.D degree in Chemistry
Resumo:
Superantigens (SAg) are proteins of bacterial or viral origin able to activate T cells by forming a trimolecular complex with both MHC class II molecules and the T cell receptor (TCR), leading to clonal deletion of reactive T cells in the thymus. SAg interact with the TCR through the beta chain variable region (Vbeta), but the TCR alpha chain has been shown to have an influence on the T cell reactivity. We have investigated here the role of the TCR alpha chain in the modulation of T cell reactivity to Mtv-7 SAg by comparing the peripheral usage of Valpha2 in Vbeta6(+) (SAg-reactive) and Vbeta8.2(+) (SAg non-reactive) T cells, in either BALB/D2 (Mtv-7(+)) or BALB/c (Mtv-7(-)) mice. The results show, first, that pairing of Vbeta6 with certain Valpha2 family members prevents T cell deletion by Mtv-7 SAg. Second, there is a strikingly different distribution of the Valpha2 family members in CD4 and CD8 populations of Vbeta6 but not of Vbeta8.2 T cells, irrespective of the presence of Mtv-7 SAg. Third, the alpha chain may play a role in the overall stability of the TCR/SAg/MHC complex. Taken together, these results suggest that the Valpha domain contributes to the selective process by its role in the TCR reactivity to SAg/MHC class II complexes, most likely by influencing the orientation of the Vbeta domain in the TCR alphabeta heterodimer.
Resumo:
Phosphopeptides tagging reactions by dinuclear zinc(II) complexes (1,3-bis[bis(2-pyridylmethyl)amino]-propan-2-olato dizinc(II)3+, called tag) were performed with a dual-channel microsprayer in electrospray ionization mass spectrometry. The reaction is first studied ex situ and analyzed with a commercial electrospray source. In situ reactions (i.e., inside the Taylor cone) were achieved with a dual-channel microsprayer both with the tag synthesized chemically before the experiments and with the tag electrogenerated by in situ oxidation of a zinc electrode, also used to apply the electrospray current. The device consists of a polyimide microchip with two microchannels (20 microm x 50 microm x 1 cm) etched on each side of the structure and connecting only at the tip of the microchip. We demonstrate here that mixing two solutions with different physicochemical properties inside the Taylor cone can be used to selectively tag target molecules.
Resumo:
Oxalic and oxamic acids are the ultimate and more persistent by-products of the degradation of N-aromatics by electrochemical advanced oxidation processes (EAOPs). In this paper, the kinetics and oxidative paths of these acids have been studied for several EAOPs using a boron-doped diamond (BDD) anode and a stainless steel or an air-diffusion cathode. Anodic oxidation (AO-BDD) in the presence of Fe2+ (AO-BDD-Fe2+) and under UVA irradiation (AO-BDD-Fe2+-UVA), along with electro-Fenton (EF-BDD), was tested. The oxidation of both acids and their iron complexes on BDD was clarified by cyclic voltammetry. AO-BDD allowed the overall mineralization of oxalic acid, but oxamic acid was removed much more slowly. Each acid underwent a similar decay in AO-BDD-Fe2+ and EFBDD, as expected if its iron complexes were not attacked by hydroxyl radicals in the bulk. The faster and total mineralization of both acids was achieved in AO-BDD-Fe2+-UVA due to the high photoactivity of their Fe(III) complexes that were continuously regenerated by oxidation of their Fe(II) complexes. Oxamic acid always released a larger proportion of NH4 + than NO3- ion, as well as volatile NOx species. Both acids were independently oxidized at the anode in AO-BDD, but in AO-BDD-Fe2+-UVA oxamic acid was more slowlydegraded as its content decreased, without significant effect on oxalic acid decay. The increase in current density enhanced the oxidation power of the latter method, with loss of efficiency. High Fe2+ contents inhibited the oxidation of Fe(II) complexes by the competitive oxidation of Fe2+ to Fe3+. Low current densities and Fe2+ contents are preferable to remove more efficiently these acids by the most potent AO-BDD-Fe2+-UVA method.
Resumo:
The key parameters associated to the thermally induced spin crossover process have been calculated for a series of Fe(II) complexes with mono-, bi-, and tridentate ligands. Combination of density functional theory calculations for the geometries and for normal vibrational modes, and highly correlated wave function methods for the energies, allows us to accurately compute the entropy variation associated to the spin transition and the zero-point corrected energy difference between the low- and high-spin states. From these values, the transition temperature, T 1/2, is estimated for different compounds.
Resumo:
Some cyclopalladated compounds containing the azido group ligand and the (C-N) ring of N,N-dimethylbenzylamine have been prepared by bridge opening reactions of dimmer azide complex precursor with some diphosphines in different stoichiometric quantities. The neutral or ionic, mono or binuclear complexes synthesized were characterized by elemental analyses, I. R. spectroscopy and NMR techniques. The series of complexes was screened for cytotoxicity against a panel three human tumour cells lines(C6,Hep-2,HeLa). All complexes were found to be cytotoxic (IC50) at µM concentrations while one complex having the coordination bond N-Pd ruptured also displayed some differential cytotoxicity.
Resumo:
Cation exchange capabilities of a Brazilian natural zeolite, identified as scolecite, were evaluated for application in wastewater control. We investigated the process of sorption of chromium(III), nickel(II), cadmium(II) and manganese(II) in synthetic aqueous effluents, including adsorption isotherms of single-metal solutions. The natural zeolite showed the ability to take up the tested heavy metals in the order Cr(III) > Cd(II) > Ni(II) > Mn(II), and this could be related to the valence and the hydration radius of the metal cations. The influence of temperature (25, 40 and 60 ºC) and initial pH value (from 4 to 6) was also evaluated. It was found that the adsorption increased substantially when the temperature was raised to 60 ºC and that maximum adsorption capacity was observed at pH 6. These results demonstrate that scolecite can be used for removal of heavy metals from aqueous effluents, under optimized conditions.
Resumo:
This review presents studies on methyl coenzyme M reductase, the biological system Factor 430 (F430) and the use of nickel(II) complexes as structural and functional models. The ability of F430 and nickel(II) macrocycle complexes to mediate the reductive dehalogenation of cyclohexyl halogens and the CH3-S bond cleavage of methyl CoM (by sodium borohydride and some intermediate species) proposed for the catalytic cycle of the biological system F430 was reviewed. The importance of the structure of the nickel complexes and the condition of the catalytic reduction reaction are also discussed.
Resumo:
In this work, we describe the immobilization of the dinuclear compound [Cu2(apyhist)2Cl2](ClO4)2 (1) and its derived cations complexes, obtained in water solution or by deprotonation of the imidazolate moiety in the ligand leading to a cyclic tetranuclear species, in the Nafion® membrane on glass carbon electrode surface. After that, we studied the influence of the equilibrium in the electrocatalytic activity towards the reduction of H2O2 in the development of an amperometric sensor for the analytical determination of hydrogen peroxide. This strategy proved successful, and the electrochemical behaviour of the all complexes formed within the Nafion® coatings was characterized. We also provide evidence that its related cyclic tetranuclear imidazolate-bridged complex acts as a catalysts for the intramolecular, two-electron reduction of H2O2.
Resumo:
The Co(II), Ni(II) and Cu(II) metal ions complexes of Bis(4-amino-5-mercapto-1,2,4-triazol-3-yl) alkanes (BATs) have been prepared and characterized by elemental analysis, conductivity measurements infrared, magnetic susceptibility, the electronic spectral data and thermal studies. Based on spectral and magnetic results, the ligands are tetradentate coordinating through the N and S-atoms of BATs; six-coordinated octahedral or distorted octahedral and some times four-coordinated square planar were proposed for these complexes. Activation energies computed for the thermal decomposition steps were compared. The ligands and their metal complexes were tested in vitro for their biological effects. Their activities against two gram-positive, two gram-negative bacteria and two fungal species were found to vary from moderate to very strong.
Resumo:
Modifications to the commercial hydride generator, manufactured by Spectrametrics, resulted in improved operating procedure and enhancement of the arsenic and germanium signals. Experiments with arsenic(III) and arsenic(V) showed that identical reiults could be produced from both oxidation states. However, since arsenic(V) is reduced more slowly than arsenic(III), peak areas and not peak heights must be measured when the arsine is immediately stripped from the system (approximately 5 seconds reaction). When the reduction is allowed to proceed for 20 seconds before the arsine is stripped, peak heights may be used. For a 200 ng/mL solution, the relative standard deviation is 2.8% for As(III) and 3.8% for As(V). The detection limit for arsenic using the modified system is 0.50 ng/mL. Studies performed on As(V) standards show that the interferences from 1000 mg/L of nickel(II), cobalt(II), iron(III), copper(II), cadmium(II), and zinc(II) can be eliminated with the aid of 5 M Hel and 3% L-cystine. Conditions for the reduction of germanium to the corresponding hydride were investigated. The effect of different concentrations of HCl on the reduction of germanium to the covalent hydride in aqueous media by means of NaBH 4 solutions was assessed. Results show that the best response is accomplished at a pH of 1.7. The use of buffer solutions was similarly characterized. In both cases, results showed that the element is best reduced when the final pH of the solution after reaction is almost neutral. In addition, a more sensitive method, which includes the use of (NH4)2S208' has been developed. A 20% increase in the germanium signal is registered when compared to the signal achieved with Hel alone. Moreover, under these conditions, reduction of germanium could be accomplished, even when the solution's pH is neutral. For a 100 ng/mL germanium standard the rsd is 3%. The detection limit for germanium in 0.05 M Hel medium (pH 1.7) is 0.10 ng/mL and 0.09 ng/mL when ammonium persulphate is used in conjunction with Hel. Interferences from 1000 mg/L of iron(III), copper(II), cobalt(II), nickel(II), cadmium(II), lead(II), mercury(II), aluminum(III), tin(IV), arsenic(III), arsenic(V) and zinc(II) were studied and characterized. In this regard, the use of (NH4)ZS20S and Hel at a pH of 1.7 proved to be a successful mixture in the sbppression of the interferences caused by iron, copper, aluminum, tin, lead, and arsenic. The method was applied to the determination of germanium in cherts and iron ores. In addition, experiments with tin(IV) showed that a 15% increase in the tin signal can be accomplished in the presence of 1 mL of (NH4)2S20S 10% (m/V).
Resumo:
The synthesis of 3-ethynylthienyl- (2.07), 3-ethynylterthienyl- (2.19) substituted qsal [qsalH = N-(8-quinolyl)salicylaldimine] and 3,3' -diethynyl-2,2' -bithienyl bridging bisqsal (5.06) ligands are described along with the preparation and characterization of eight cationic iron(III) complexes containing these ligands with a selection of counteranions [(2.07) with: SCN- (2.08), PF6- (2.09), and CI04- (2.10); (2.19) with PF6 - (2.20); (5.06) with: cr (5.07), SeN- (5.08), PF6- (5.09), and CI04- (5.10)]. Spin-crossover is observed in the solid state for (2.08) - (2.10) and (5.07) - (5.10), including a ve ry rare S = 5/2 to 3/2 spin-crossover in complex (2.09). The unusal reduction of complex (2.10) produces a high-spin iron(I1) complex (2.12). Six iron(II) complexes that are derived from thienyl analogues of bispicen [bispicen = bis(2-pyridylmethyl)-diamine] [2,5-thienyl substituents = H- (3.11), Phenyl- (3.12), 2- thienyl (3.13) or N-phenyl-2-pyridinalimine ligands [2,5-phenyl substituents = diphenyl (3.23), di(2-thienyl) (3.24), 4-phenyl substituent = 3-thienyl (3.25)] are reported Complexes (3.11), (3.23) and (3.25) display thermal spin-crossover in the solid state and (3.12) remains high-spin at all temperatures. Complex (3.13) rearranges to form an iron(II) complex (3.14) with temperature dependent magnetic properties be s t described as a one-dimensional ferromagnetic chain, with interchain antiferromagnetic interactions and/or ZFS dominant at low temperatures. Magnetic succeptibility and Mossbauer data for complex (3.24) display a temperature dependent mixture of spin isomers. The preparation and characterization of two cobalt(II) complexes containing 3- ethynylthienyl- (4.04) and 3-ethynylterhienyl- (4.06) substituted bipyridine ligands [(4.05): [Co(dbsqh(4.04)]; (4.07): [Co(dbsq)2(4.06)]] [dbsq = 3,5-dbsq=3,5-di-tert-butylI ,2-semiquinonate] are reported. Complexes (4.05) and (4.07) exhibit thermal valence tautomerism in the solid state and in solution. Self assembly of complex (2.10) into polymeric spheres (6.11) afforded the first spincrossover, polydisperse, micro- to nanoscale material of its kind. . Complexes (2.20), (3.24) and (4.07) also form polymers through electrochemical synthesis to produce hybrid metaUopolymer films (6.12), (6.15) and (6.16), respectively. The films have been characterized by EDX, FT-IR and UV-Vis spectroscopy. Variable-temperature magnetic susceptibility measurements demonstrate that spin lability is operative in the polymers and conductivity measurements confirm the electron transport properties. Polymer (6.15) has a persistent oxidized state that shows a significant decrease in electrical resistance.