934 resultados para Cable-array robot
Resumo:
The work reported in this paper proposes a novel synergy between parallel computing and swarm robotics to offer a new computing paradigm, 'swarm-array computing' that can harness and apply autonomic computing for parallel computing systems. One approach among three proposed approaches in swarm-array computing based on landscapes of intelligent cores, in which the cores of a parallel computing system are abstracted to swarm agents, is investigated. A task is executed and transferred seamlessly between cores in the proposed approach thereby achieving self-ware properties that characterize autonomic computing. FPGAs are considered as an experimental platform taking into account its application in space robotics. The feasibility of the proposed approach is validated on the SeSAm multi-agent simulator.
Resumo:
The work reported in this paper is motivated by the need to investigate general methods for pattern transformation. A formal definition for pattern transformation is provided and four special cases namely, elementary and geometric transformation based on repositioning all and some agents in the pattern are introduced. The need for a mathematical tool and simulations for visualizing the behavior of a transformation method is highlighted. A mathematical method based on the Moebius transformation is proposed. The transformation method involves discretization of events for planning paths of individual robots in a pattern. Simulations on a particle physics simulator are used to validate the feasibility of the proposed method.
Resumo:
Can autonomic computing concepts be applied to traditional multi-core systems found in high performance computing environments? In this paper, we propose a novel synergy between parallel computing and swarm robotics to offer a new computing paradigm, `Swarm-Array Computing' that can harness and apply autonomic computing for parallel computing systems. One approach among three proposed approaches in swarm-array computing based on landscapes of intelligent cores, in which the cores of a parallel computing system are abstracted to swarm agents, is investigated. A task gets executed and transferred seamlessly between cores in the proposed approach thereby achieving self-ware properties that characterize autonomic computing. FPGAs are considered as an experimental platform taking into account its application in space robotics. The feasibility of the proposed approach is validated on the SeSAm multi-agent simulator.
Resumo:
Background: Robot-mediated therapies offer entirely new approaches to neurorehabilitation. In this paper we present the results obtained from trialling the GENTLE/S neurorehabilitation system assessed using the upper limb section of the Fugl-Meyer ( FM) outcome measure. Methods: We demonstrate the design of our clinical trial and its results analysed using a novel statistical approach based on a multivariate analytical model. This paper provides the rational for using multivariate models in robot-mediated clinical trials and draws conclusions from the clinical data gathered during the GENTLE/S study. Results: The FM outcome measures recorded during the baseline ( 8 sessions), robot-mediated therapy ( 9 sessions) and sling-suspension ( 9 sessions) was analysed using a multiple regression model. The results indicate positive but modest recovery trends favouring both interventions used in GENTLE/S clinical trial. The modest recovery shown occurred at a time late after stroke when changes are not clinically anticipated. Conclusion: This study has applied a new method for analysing clinical data obtained from rehabilitation robotics studies. While the data obtained during the clinical trial is of multivariate nature, having multipoint and progressive nature, the multiple regression model used showed great potential for drawing conclusions from this study. An important conclusion to draw from this paper is that this study has shown that the intervention and control phase both caused changes over a period of 9 sessions in comparison to the baseline. This might indicate that use of new challenging and motivational therapies can influence the outcome of therapies at a point when clinical changes are not expected. Further work is required to investigate the effects arising from early intervention, longer exposure and intensity of the therapies. Finally, more function-oriented robot-mediated therapies or sling-suspension therapies are needed to clarify the effects resulting from each intervention for stroke recovery.