985 resultados para CONTRAST-ENHANCED MRI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vaccination with synthetic peptides representing cytotoxic T lymphocyte (CTL) epitopes can lead to a protective CTL-mediated immunity against tumors or viruses. We now report that vaccination with a CTL epitope derived from the human adenovirus type 5 E1A-region (Ad5E1A234-243), which can serve as a target for tumor-eradicating CTL, enhances rather than inhibits the growth of Ad5E1A-expressing tumors. This adverse effect of peptide vaccination was rapidly evoked, required low doses of peptide (10 micrograms), and was achieved by a mode of peptide delivery that induces protective T-cell-mediated immunity in other models. Ad5E1A-specific CTL activity could no longer be isolated from mice after injection of Ad5E1A-peptide, indicating that tolerization of Ad5E1A-specific CTL activity causes the enhanced tumor outgrowth. In contrast to peptide vaccination, immunization with adenovirus, expressing Ad5E1A, induced Ad5E1A-specific immunity and prevented the outgrowth of Ad5E1A-expressing tumors. These results show that immunization with synthetic peptides can lead to the elimination of anti-tumor CTL responses. These findings are important for the design of safe peptide-based vaccines against tumors, allogeneic organ transplants, and T-cell-mediated autoimmune diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Monte Carlo simulation method for globular proteins, called extended-scaled-collective-variable (ESCV) Monte Carlo, is proposed. This method combines two Monte Carlo algorithms known as entropy-sampling and scaled-collective-variable algorithms. Entropy-sampling Monte Carlo is able to sample a large configurational space even in a disordered system that has a large number of potential barriers. In contrast, scaled-collective-variable Monte Carlo provides an efficient sampling for a system whose dynamics is highly cooperative. Because a globular protein is a disordered system whose dynamics is characterized by collective motions, a combination of these two algorithms could provide an optimal Monte Carlo simulation for a globular protein. As a test case, we have carried out an ESCV Monte Carlo simulation for a cell adhesive Arg-Gly-Asp-containing peptide, Lys-Arg-Cys-Arg-Gly-Asp-Cys-Met-Asp, and determined the conformational distribution at 300 K. The peptide contains a disulfide bridge between the two cysteine residues. This bond mimics the strong geometrical constraints that result from a protein's globular nature and give rise to highly cooperative dynamics. Computation results show that the ESCV Monte Carlo was not trapped at any local minimum and that the canonical distribution was correctly determined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A systematic evaluation of structure-activity information led to the construction of genetically engineered interleukin 3 (IL-3) receptor agonists (synthokines) with enhanced hematopoietic potency. SC-55494, the most extensively characterized member of this series, exhibits 10- to 20-fold greater biological activity than recombinant human IL-3 (rhIL-3) in human hematopoietic cell proliferation and marrow colony-forming-unit assays. In contrast, SC-55494 is only twice as active as rhIL-3 in priming the synthesis of inflammatory mediators such as leukotriene C4 and triggering the release of histamine from peripheral blood leukocytes. The enhanced hematopoietic activity of SC-55494 correlates with a 60-fold increase in IL-3 alpha-subunit binding affinity and a 20-fold greater affinity for binding to alpha/beta receptor complexes on intact cells relative to rhIL-3. SC-55494 demonstrates a 5- to 10-fold enhanced hematopoietic response relative to its ability to activate the priming and release of inflammatory mediators. Therefore, SC-55494 may ameliorate the myeloablation of cancer therapeutic regimens while minimizing dose-limiting inflammatory side effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The remarkable physicochemical properties of magnetic nanoparticles (MNPs) at the nanoscale have boosted the development of new and promising strategies for the simultaneous diagnosis and treatment of diseases, particularly in cancer therapy Ð the so-called theranostic applications (1). In these strategies, the intrinsic superparamagnetic properties of MNPs have been exploited to gain access into multifunctional systems able to simultaneously perform as enhanced magnetic resonance imaging (MRI) contrast agents, efficient nanocarriers for drug delivery and nanoheaters in magnetic hyperthermia based therapy (2), among others.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE To evaluate image contrast and color setting on assessment of retinal structures and morphology in spectral-domain optical coherence tomography. METHODS Two hundred and forty-eight Spectralis spectral-domain optical coherence tomography B-scans of 62 patients were analyzed by 4 readers. B-scans were extracted in 4 settings: W + N = white background with black image at normal contrast 9; W + H = white background with black image at maximum contrast 16; B + N = black background with white image at normal contrast 12; B + H = black background with white image at maximum contrast 16. Readers analyzed the images to identify morphologic features. Interreader correlation was calculated. Differences between Fleiss-kappa correlation coefficients were examined using bootstrap method. Any setting with significantly higher correlation coefficient was deemed superior for evaluating specific features. RESULTS Correlation coefficients differed among settings. No single setting was superior for all respective spectral-domain optical coherence tomography parameters (P = 0.3773). Some variables showed no differences among settings. Hard exudates and subretinal fluid were best seen with B + H (κ = 0.46, P = 0.0237 and κ = 0.78, P = 0.002). Microaneurysms were best seen with W + N (κ = 0.56, P = 0.025). Vitreomacular interface, enhanced transmission signal, and epiretinal membrane were best identified using all color/contrast settings together (κ = 0.44, P = 0.042, κ = 0.57, P = 0.01, and κ = 0.62, P ≤ 0.0001). CONCLUSION Contrast and background affect the evaluation of retinal structures on spectral-domain optical coherence tomography images. No single setting was superior for all features, though certain changes were best seen with specific settings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Advances in three-dimensional (313) electron microscopy (EM) and image processing are providing considerable improvements in the resolution of subcellular volumes, macromolecular assemblies and individual proteins. However, the recovery of high-frequency information from biological samples is hindered by specimen sensitivity to beam damage. Low dose electron cryo-microscopy conditions afford reduced beam damage but typically yield images with reduced contrast and low signal-to-noise ratios (SNRs). Here, we describe the properties of a new discriminative bilateral (DBL) filter that is based upon the bilateral filter implementation of Jiang et al. (Jiang, W., Baker, M.L., Wu, Q., Bajaj, C., Chin, W., 2003. Applications of a bilateral denoising filter in biological electron microscopy. J. Struc. Biol. 128, 82-97.). In contrast to the latter, the DBL filter can distinguish between object edges and high-frequency noise pixels through the use of an additional photometric exclusion function. As a result, high frequency noise pixels are smoothed, yet object edge detail is preserved. In the present study, we show that the DBL filter effectively reduces noise in low SNR single particle data as well as cellular tomograms of stained plastic sections. The properties of the DBL filter are discussed in terms of its usefulness for single particle analysis and for pre-processing cellular tomograms ahead of image segmentation. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We assessed summation of contrast across eyes and area at detection threshold ( C t). Stimuli were sine-wave gratings (2.5 c/deg) spatially modulated by cosine- and anticosine-phase raised plaids (0.5 c/deg components oriented at ±45°). When presented dichoptically the signal regions were interdigitated across eyes but produced a smooth continuous grating following their linear binocular sum. The average summation ratio ( C t1/([ C t1+2]) for this stimulus pair was 1.64 (4.3 dB). This was only slightly less than the binocular summation found for the same patch type presented to both eyes, and the area summation found for the two different patch types presented to the same eye. We considered 192 model architectures containing each of the following four elements in all possible orders: (i) linear summation or a MAX operator across eyes, (ii) linear summation or a MAX operator across area, (iii) linear or accelerating contrast transduction, and (iv) additive Gaussian, stochastic noise. Formal equivalences reduced this to 62 different models. The most successful four-element model was: linear summation across eyes followed by nonlinear contrast transduction, linear summation across area, and late noise. Model performance was enhanced when additional nonlinearities were placed before binocular summation and after area summation. The implications for models of probability summation and uncertainty are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Liposome systems are well reported for their activity as vaccine adjuvants; however novel lipid-based microbubbles have also been reported to enhance the targeting of antigens into dendritic cells (DCs) in cancer immunotherapy (Suzuki et al 2009). This research initially focused on the formulation of gas-filled lipid coated microbubbles and their potential activation of macrophages using in vitro models. Further studies in the thesis concentrated on aqueous-filled liposomes as vaccine delivery systems. Initial work involved formulating and characterising four different methods of producing lipid-coated microbubbles (sometimes referred to as gas-filled liposomes), by homogenisation, sonication, a gas-releasing chemical reaction and agitation/pressurisation in terms of stability and physico-chemical characteristics. Two of the preparations were tested as pressure probes in MRI studies. The first preparation composed of a standard phospholipid (DSPC) filled with air or nitrogen (N2), whilst in the second method the microbubbles were composed of a fluorinated phospholipid (F-GPC) filled with a fluorocarbon saturated gas. The studies showed that whilst maintaining high sensitivity, a novel contrast agent which allows stable MRI measurements of fluid pressure over time, could be produced using lipid-coated microbubbles. The F-GPC microbubbles were found to withstand pressures up to 2.6 bar with minimal damage as opposed to the DSPC microbubbles, which were damaged at above 1.3 bar. However, it was also found that DSPC-filled with N2 microbubbles were also extremely robust to pressure and their performance was similar to that of F-GPC based microbubbles. Following on from the MRI studies, the DSPC-air and N2 filled lipid-based microbubbles were assessed for their potential activation of macrophages using in vitro models and compared to equivalent aqueous-filled liposomes. The microbubble formulations did not stimulate macrophage uptake, so studies thereafter focused on aqueous-filled liposomes. Further studies concentrated on formulating and characterising, both physico-chemically and immunologically, cationic liposomes based on the potent adjuvant dimethyldioctadecylammonium (DDA) and immunomodulatory trehalose dibehenate (TDB) with the addition of polyethylene glycol (PEG). One of the proposed hypotheses for the mechanism behind the immunostimulatory effect obtained with DDA:TDB is the ‘depot effect’ in which the liposomal carrier helps to retain the antigen at the injection site thereby increasing the time of vaccine exposure to the immune cells. The depot effect has been suggested to be primarily due to their cationic nature. Results reported within this thesis demonstrate that higher levels of PEG i.e. 25 % were able to significantly inhibit the formation of a liposome depot at the injection site and also severely limit the retention of antigen at the site. This therefore resulted in a faster drainage of the liposomes from the site of injection. The versatility of cationic liposomes based on DDA:TDB in combination with different immunostimulatory ligands including, polyinosinic-polycytidylic acid (poly (I:C), TLR 3 ligand), and CpG (TLR 9 ligand) either entrapped within the vesicles or adsorbed onto the liposome surface was investigated for immunogenic capacity as vaccine adjuvants. Small unilamellar (SUV) DDA:TDB vesicles (20-100 nm native size) with protein antigen adsorbed to the vesicle surface were the most potent in inducing both T cell (7-fold increase) and antibody (up to 2 log increase) antigen specific responses. The addition of TLR agonists poly(I:C) and CpG to SUV liposomes had small or no effect on their adjuvanticity. Finally, threitol ceramide (ThrCer), a new mmunostimulatory agent, was incorporated into the bilayers of liposomes composed of DDA or DSPC to investigate the uptake of ThrCer, by dendritic cells (DCs), and presentation on CD1d molecules to invariant natural killer T cells. These systems were prepared both as multilamellar vesicles (MLV) and Small unilamellar (SUV). It was demonstrated that the IFN-g secretion was higher for DDA SUV liposome formulation (p<0.05), suggesting that ThrCer encapsulation in this liposome formulation resulted in a higher uptake by DCs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to prepare gas-filled lipid-coated microbubbles as potential MRI contrast agents for imaging of fluid pressure. Air-filled microbubbles were produced with phospholipid 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) in the presence or absence of cholesterol and/or polyethylene-glycol distearate (PEG-distearate). Microbubbles were also prepared containing a fluorinated phospholipid, perfluoroalkylated glycerol-phosphatidylcholine, F-GPC shells encompassing perfluorohexane-saturated nitrogen gas. These microbubbles were evaluated in terms of physico-chemical characteristics such as size and stability. In parallel to these studies, DSPC microbubbles were also formulated containing nitrogen (N2) gas and compared to air-filled microbubbles. By preventing advection, signal drifts were used to assess their stability. DSPC microbubbles were found to have a drift of 20% signal change per bar of applied pressure in contrast to the F-GPC microbubbles which are considerably more stable with a lower drift of 5% signal change per bar of applied pressure. By increasing the pressure of the system and monitoring the MR signal intensity, the point at which the majority of the microbubbles have been damaged was determined. For the DSPC microbubbles this occurs at 1.3 bar whilst the F-GPC microbubbles withstand pressures up to 2.6 bar. For the comparison between air-filled and N2-filled microbubbles, the MRI sensitivity is assessed by cycling the pressure of the system and monitoring the MR signal intensity. It was found that the sensitivity exhibited by the N2-filled microbubbles remained constant, whilst the air-filled microbubbles demonstrated a continuous drop in sensitivity due to continuous bubble damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although well known for delivering various pharmaceutical agents, liposomes can be prepared to entrap gas rather than aqueous media and have the potential to be used as pressure probes in magnetic resonance imaging (MRI). Using these gas-filled liposomes (GFL) as tracers, MRI imaging of pressure regions of a fluid flowing through a porous medium could be established. This knowledge can be exploited to enhance recovery of oil from the porous rock regions within oil fields. In the preliminary studies, we have optimized the lipid composition of GFL prepared using a simple homogenization technique and investigated key physico-chemical characteristics (size and the physical stability) and their efficacy as pressure probes. In contrast to the liposomes possessing an aqueous core which are prepared at temperatures above their phase transition temperature (Tc), homogenization of the phospholipids such as 1,2-dipalmitoyl-sn-glycero-3- phosphocholine (DPPC) or 1,2-distearoyl-sn-glycero-3-phosphocoline (DSPC) in aqueous medium below their Tc was found to be crucial in formation of stable GFL. DSPC based preparations yielded a GFL volume of more than five times compared to their DPPC counter part. Although the initial vesicle sizes of both DSPC and DPPC based GFL were about 10 μm, after 7 days storage at 25°C, the vesicle sizes of both formulations significantly (p < 0.05) increased to 28.3 ± 0.3 μm and 12.3 ± 1.0 μm, respectively. When the DPPC preparation was supplemented with cholesterol at a 1:0.5 or 1:1 molar ratio, significantly (p < 0.05) larger vesicles were formed (12-13 μm), however, compared to DPPC only vesicles, both cholesterol supplemented formulations displayed enhanced stability on storage indicating a stabilizing effect of cholesterol on these gas-filled vesicles. In order to induce surface charge on the GFL, DPPC and cholesterol (1: 0.5 molar ratio) liposomes were supplemented with a cationic surfactant, stearylamine, at a molar ratio of 0.25 or 0.125. Interestingly, the ζ potential values remained around neutrality at both stearylamine ratios suggesting the cationic surfactant was not incorporated within the bilayers of the GFL. Microscopic analysis of GFL confirmed the presence of spherical structures with a size distribution between 1-8 μm. This study has identified that DSPC based GFL in aqueous medium dispersed in 2% w/v methyl cellulose although yielded higher vesicle sizes over time were most stable under high pressures exerted in MRI. Copyright © Informa Healthcare USA, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The search by many investigators for a solution to the reading problems encountered by individuals with no central vision has been long and, to date, not very fruitful. Most textual manipulations, including font size, have led to only modest gains in reading speed. Previous work on spatial integrative properties of peripheral retina suggests that 'visual crowding' may be a major factor contributing to inefficient reading. Crowding refers to the fact that juxtaposed targets viewed eccentrically may be difficult to identify. The purpose of this study was to assess the combined effects of line spacing and word spacing on the ability of individuals with age-related macular degeneration (ARMD) to read short passages of text that were printed with either high (87.5%) or low contrast (17.5%) letters. Low contrast text was used to avoid potential ceiling effects and to mimic a possible reduction in letter contrast with light scatter from media opacities. For both low and high contrast text, the fastest reading speeds we measured were for passages of text with double line and double word spacing. In comparison with standard single spacing, double word/line spacing increased reading speed by approximately 26% with high contrast text (p < 0.001), and by 46% with low contrast text (p < 0.001). In addition, double line/word spacing more than halved the number of reading errors obtained with single spaced text. We compare our results with previous reading studies on ARMD patients, and conclude that crowding is detrimental to reading and that its effects can be reduced with enhanced text spacing. Spacing is particularly important when the contrast of the text is reduced, as may occur with intraocular light scatter or poor viewing conditions. We recommend that macular disease patients should employ double line spacing and double-character word spacing to maximize their reading efficiency. © 2013 Blackmore-Wright et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents MRI measurements of a novel semi solid MR contrast agent to pressure. The agent is comprised of potassium chloride cross linked carageenan gum at a concentration of 2% w/v, with micron size lipid coated bubbles of air at a concentration of 3% v/v. The choice for an optimum suspending medium, the methods of production and the preliminary MRI results are presented herein. The carageenan gum is shown to be ideally elastic for compressions relating to volume changes less than 15%, in contrast to the inelastic gellan gum also tested. Although slightly lower than that of gellan gum, carageenan has a water diffusion coefficient of 1.72×10-9 m2.s-1 indicating its suitability to this purpose. RARE imaging is performed whilst simultaneously compressing test and control samples and a maximum sensitivity of 1.6% MR signal change per % volume change is found which is shown to be independent of proton density variations due to the presence of microbubbles and compression. This contrast agent could prove useful for numerous applications, and particularly in chemical engineering. More generally the method allows the user to non-invasively image with MRI any process that causes, within the solid, local changes either in bubble size or bubble shape. © 2008 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fluorescence-enhanced optical imaging is an emerging non-invasive and non-ionizing modality towards breast cancer diagnosis. Various optical imaging systems are currently available, although most of them are limited by bulky instrumentation, or their inability to flexibly image different tissue volumes and shapes. Hand-held based optical imaging systems are a recent development for its improved portability, but are currently limited only to surface mapping. Herein, a novel optical imager, consisting primarily of a hand-held probe and a gain-modulated intensified charge coupled device (ICCD) detector, is developed towards both surface and tomographic breast imaging. The unique features of this hand-held probe based optical imager are its ability to; (i) image large tissue areas (5×10 sq. cm) in a single scan, (ii) reduce overall imaging time using a unique measurement geometry, and (iii) perform tomographic imaging for tumor three-dimensional (3-D) localization. Frequency-domain based experimental phantom studies have been performed on slab geometries (650 ml) under different target depths (1-2.5 cm), target volumes (0.45, 0.23 and 0.10 cc), fluorescence absorption contrast ratios (1:0, 1000:1 to 5:1), and number of targets (up to 3), using Indocyanine Green (ICG) as fluorescence contrast agents. An approximate extended Kalman filter based inverse algorithm has been adapted towards 3-D tomographic reconstructions. Single fluorescence target(s) was reconstructed when located: (i) up to 2.5 cm deep (at 1:0 contrast ratio) and 1.5 cm deep (up to 10:1 contrast ratio) for 0.45 cc-target; and (ii) 1.5 cm deep for target as small as 0.10 cc at 1:0 contrast ratio. In the case of multiple targets, two targets as close as 0.7 cm were tomographically resolved when located 1.5 cm deep. It was observed that performing multi-projection (here dual) based tomographic imaging using a priori target information from surface images, improved the target depth recovery over using single projection based imaging. From a total of 98 experimental phantom studies, the sensitivity and specificity of the imager was estimated as 81-86% and 43-50%, respectively. With 3-D tomographic imaging successfully demonstrated for the first time using a hand-held based optical imager, the clinical translation of this technology is promising upon further experimental validation from in-vitro and in-vivo studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A tenet of modern radiotherapy (RT) is to identify the treatment target accurately, following which the high-dose treatment volume may be expanded into the surrounding tissues in order to create the clinical and planning target volumes. Respiratory motion can induce errors in target volume delineation and dose delivery in radiation therapy for thoracic and abdominal cancers. Historically, radiotherapy treatment planning in the thoracic and abdominal regions has used 2D or 3D images acquired under uncoached free-breathing conditions, irrespective of whether the target tumor is moving or not. Once the gross target volume has been delineated, standard margins are commonly added in order to account for motion. However, the generic margins do not usually take the target motion trajectory into consideration. That may lead to under- or over-estimate motion with subsequent risk of missing the target during treatment or irradiating excessive normal tissue. That introduces systematic errors into treatment planning and delivery. In clinical practice, four-dimensional (4D) imaging has been popular in For RT motion management. It provides temporal information about tumor and organ at risk motion, and it permits patient-specific treatment planning. The most common contemporary imaging technique for identifying tumor motion is 4D computed tomography (4D-CT). However, CT has poor soft tissue contrast and it induce ionizing radiation hazard. In the last decade, 4D magnetic resonance imaging (4D-MRI) has become an emerging tool to image respiratory motion, especially in the abdomen, because of the superior soft-tissue contrast. Recently, several 4D-MRI techniques have been proposed, including prospective and retrospective approaches. Nevertheless, 4D-MRI techniques are faced with several challenges: 1) suboptimal and inconsistent tumor contrast with large inter-patient variation; 2) relatively low temporal-spatial resolution; 3) it lacks a reliable respiratory surrogate. In this research work, novel 4D-MRI techniques applying MRI weightings that was not used in existing 4D-MRI techniques, including T2/T1-weighted, T2-weighted and Diffusion-weighted MRI were investigated. A result-driven phase retrospective sorting method was proposed, and it was applied to image space as well as k-space of MR imaging. Novel image-based respiratory surrogates were developed, improved and evaluated.