962 resultados para COASTAL ZONE
Resumo:
Mode of access: Internet.
Resumo:
"August 1976."
Resumo:
"February 1980."
Resumo:
"May 1977."
Resumo:
New dredge-disposal techniques may serve the dual role of aiding sand by-passing across coastal inlets, and beach nourishment, provided the dredged sediments placed seaward of the surf zone move shoreward into that zone. During the summer of 1976, 26,750 cubic meters of relatively coarse sediment was dredged from New River Inlet, North Carolina, moved down coast by a split-hull barge, and placed in a 215-meter coastal reach between the 2- and 4-meter depth contours. Bathymetric changes on the disposal piles and in the adjacent beach and nearshore area were studied for a 13-week period (August to November 1976) to determine the modification of the surrounding beach and nearshore profile, and the net transport direction of the disposal sediment. The sediment piles initially created a local shoal zone with minimum depths of 0.6 meter. Disposal sediment was coarser (Mn = 0.49 millimeter) than the native sand at the disposal site (Mn = 0.14 millimeter) and coarser than the composite mean grain size of the entire profile (Mn = 0.21 millimeter). Shoaling and breaking waves caused rapid erosion of the pile tops and a gradual coalescing of the piles to form a disposal bar located seaward (= 90 meters) of a naturally occurring surf zone bar. As the disposal bar relief was reduced, the disposal bar-associated breaker zone was restricted to low tide times or periods of high wave conditions.
Resumo:
Includes bibliographical references: (p. 48-55).
Resumo:
"September 1982."
Resumo:
Field observations on an unconfined coastal aquifer showed that a groundwater pulse, generated by it moderate (significant wave height, H-sig similar to 4.5 m) wave/storm event, induced significant oscillations in the salt-freshwater interface of the order of several metres in the horizontal direction. A dynamic sharp-interface model is developed to quantify the mechanism of these interface oscillations. The model uses the 50% seawater salinity contour as the location of the equivalent sharp-interface. The model was calibrated against the observed groundwater table fluctuations. It predicted reasonably well the interface oscillations with a slight over-prediction of the oscillation magnitude and a steepening of the interface. The neglect of mixing in the salt-freshwater mixing zone by the sharp-interface model is suggested as a possible contributor to the discrepancies between the model predictions and observations. In contrast with the significant wave effects, there was no observable response of the interface to diurnal or semidiurnal tides. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Large groundwater table fluctuations were observed in a coastal aquifer during an offshore storm. The storm induced significant changes of the mean shoreline elevation, characterized by a pulse-like oscillation. This pulse propagated in the aquifer, resulting in the water table fluctuations. A general analytical solution is derived to quantify this new mechanism of water table fluctuation. The solution is applied to field observations and is found to be able to predict reasonably well the observed storm-induced water table fluctuations. Based on the analytical solution, the damping characteristics and phase shift of the oscillation as it propagates inland are examined.
Resumo:
Special edition: The United Nations and international legal order - the case of the Juno Trader - on 18 December 2004, the International Tribunal for the Law of the Sea ordered the prompt release of a refrigerated cargo vessel and its cargo for fisheries violations in an exclusive economic zone - Tribunal unanimously decided that the vessel and cargo be released, upon posting of a bond in the form of a bank guarantee - crew should be free to leave without conditions - in this case, on prompt release, the Tribunal made valuable contributions to existing case law on the issue - shows that specialised tribunals may perform a decentralised application of the international rule of law - crystallises international fundamental standards of fairness and human rights.
Field observations of instantaneous water slopes and horizontal pressure gradients in the swash-zone
Resumo:
Field observations of instantaneous water surface slopes in the swash zone are presented. For free-surface flows with a hydrostatic pressure distribution the surface slope is equivalent to the horizontal pressure gradient. Observations were made using a novel technique which in its simplest form consists of a horizontal stringline extending seaward from the beach face. Visual observation, still photography or video photography is then sufficient to determine the surface slope where the free-surface cuts the line or between reference points in the image. The method resolves the mean surface gradient over a cross-shore distance of 5 m or more to within +/- 0.001, or 1/20th -1/100th of typical beach gradients. In addition, at selected points and at any instant in time during the swash cycle, the water surface slope can be determined exactly to be dipping either seaward or landward. Close to the location of bore collapse landward dipping water surface slopes of order 0.05-0.1 occur over a very small region (order 0.5 m) at the blunt or convex leading edge of the swash. In the middle and upper swash the water surface slope at this leading edge is usually very close to horizontal or slightly seaward. Behind the leading edge, the water surface slope was observed to be very close to horizontal or dipping seaward at all times throughout the swash uprush. During the backwash the water surface slope was observed to be always dipping seaward, approaching the beach slope, and remained seaward until a new uprush edge or incident bore passed any particular cross-shore location of interest. The observations strongly Suggest that the swash boundary layer is subject to an adverse pressure gradient during uprush and a favourable pressure gradient during the backwash. Furthermore, assuming Euler's equations are a good approximation in the swash, the observations also show that the total fluid acceleration is negative (offshore) for almost the whole of the uprush and for the entire backwash. The observations are contrary to recent work suggesting significant shoreward directed accelerations and pressure gradients occur in the swash (i.e., delta u/delta t > 0 similar to delta p/delta x < 0), but consistent with analytical and numerical solutions for swash uprush and backwash. The results have important implications for sediment transport modelling in the swash zone.
Resumo:
This study documents two different modes of berm development: (I) vertical growth at spring tides or following significant beach cut due to substantial swash overtopping, and (2) horizontal progradation at neap tides through the formation of a proto-berm located lower and further seaward of the principal berm. Concurrent high-frequency measurements of bed elevation and the associated wave runup distribution reveal the details of each of these berm growth modes. In mode I sediment is eroded from the inner surf and lower swash zone where swash interactions are prevalent. The net transport of this sediment is landward only, resulting in accretion onto the upper beach face and over the berm crest. The final outcome is a steepening of the beach face gradient, a change in the profile shape towards concave and rapid vertical and horizontal growth of the berm. In mode 2 sediment is eroded from the lower two-thirds of the active swash zone during the rising tide and is transported both landward and seaward. On the falling tide sediment is eroded from the inner surf and transported landward to backfill the zone eroded on the rising tide. The net result is relatively slow steepening of the beach face, a change of the profile shape towards convex, and horizontal progradation through the formation of a neap berm. The primary factor determining which mode of berm growth occurs is the presence or absence of swash overtopping at the time of sediment accumulation on the beach face. This depends on the current phase of the spring-neap tide cycle, the wave runup height (and indirectly offshore wave conditions) and the height of the pre-existing berm. A conceptual model for berm morphodynamics is presented, based on sediment transport shape functions measured during the two modes of berm growth. (c) 2006 Elsevier B.V. All rights reserved.