894 resultados para CO2 emissions
Resumo:
Thecosome pteropods (pelagic mollusks) can play a key role in the food web of various marine ecosystems. They are a food source for zooplankton or higher predators such as fishes, whales and birds that is particularly important in high latitude areas. Since they harbor a highly soluble aragonitic shell, they could be very sensitive to ocean acidification driven by the increase of anthropogenic CO2 emissions. The effect of changes in the seawater chemistry was investigated on Limacina helicina, a key species of Arctic pelagic ecosystems. Individuals were kept in the laboratory under controlled pCO2 levels of 280, 380, 550, 760 and 1020 µatm and at control (0°C) and elevated (4°C) temperatures. The respiration rate was unaffected by pCO2 at control temperature, but significantly increased as a function of the pCO2 level at elevated temperature. pCO2 had no effect on the gut clearance rate at either temperature. Precipitation of CaCO3, measured as the incorporation of 45Ca, significantly declined as a function of pCO2 at both temperatures. The decrease in calcium carbonate precipitation was highly correlated to the aragonite saturation state. Even though this study demonstrates that pteropods are able to precipitate calcium carbonate at low aragonite saturation state, the results support the current concern for the future of Arctic pteropods, as the production of their shell appears to be very sensitive to decreased pH. A decline of pteropod populations would likely cause dramatic changes to various pelagic ecosystems.
Resumo:
Thecosome pteropods (pelagic mollusks) can play a key role in the food web of various marine ecosystems. They are a food source for zooplankton or higher predators such as fishes, whales and birds that is particularly important in high latitude areas. Since they harbor a highly soluble aragonitic shell, they could be very sensitive to ocean acidification driven by the increase of anthropogenic CO2 emissions. The effect of changes in the seawater chemistry was investigated on Limacina helicina, a key species of Arctic pelagic ecosystems. Individuals were kept in the laboratory under controlled pCO2 levels of 280, 380, 550, 760 and 1020 µatm and at control (0°C) and elevated (4°C) temperatures. The respiration rate was unaffected by pCO2 at control temperature, but significantly increased as a function of the pCO2 level at elevated temperature. pCO2 had no effect on the gut clearance rate at either temperature. Precipitation of CaCO3, measured as the incorporation of 45Ca, significantly declined as a function of pCO2 at both temperatures. The decrease in calcium carbonate precipitation was highly correlated to the aragonite saturation state. Even though this study demonstrates that pteropods are able to precipitate calcium carbonate at low aragonite saturation state, the results support the current concern for the future of Arctic pteropods, as the production of their shell appears to be very sensitive to decreased pH. A decline of pteropod populations would likely cause dramatic changes to various pelagic ecosystems.
Resumo:
Anthropogenic CO2 emission will lead to an increase in seawater pCO2 of up to 80-100 Pa (800-1000 µatm) within this century and to an acidification of the oceans. Green sea urchins (Strongylocentrotus droebachiensis) occurring in Kattegat experience seasonal hypercapnic and hypoxic conditions already today. Thus, anthropogenic CO2 emissions will add up to existing values and will lead to even higher pCO2 values >200 Pa (>2000 µatm). To estimate the green sea urchins' potential to acclimate to acidified seawater, we calculated an energy budget and determined the extracellular acid base status of adult S. droebachiensis exposed to moderately (102 to 145 Pa, 1007 to 1431 µatm) and highly (284 to 385 Pa, 2800 to 3800 µatm) elevated seawater pCO2 for 10 and 45 days. A 45 - day exposure to elevated pCO2 resulted in a shift in energy budgets, leading to reduced somatic and reproductive growth. Metabolic rates were not significantly affected, but ammonium excretion increased in response to elevated pCO2. This led to decreased O:N ratios. These findings suggest that protein metabolism is possibly enhanced under elevated pCO2 in order to support ion homeostasis by increasing net acid extrusion. The perivisceral coelomic fluid acid-base status revealed that S. droebachiensis is able to fully (intermediate pCO2) or partially (high pCO2) compensate extracellular pH (pHe) changes by accumulation of bicarbonate (maximum increases 2.5 mM), albeit at a slower rate than typically observed in other taxa (10 day duration for full pHe compensation). At intermediate pCO2, sea urchins were able to maintain fully compensated pHe for 45 days. Sea urchins from the higher pCO2 treatment could be divided into two groups following medium-term acclimation: one group of experimental animals (29%) contained remnants of food in their digestive system and maintained partially compensated pHe (+2.3 mM HCO3), while the other group (71%) exhibited an empty digestive system and a severe metabolic acidosis (-0.5 pH units, -2.4 mM HCO3). There was no difference in mortality between the three pCO2 treatments. The results of this study suggest that S. droebachiensis occurring in the Kattegat might be pre-adapted to hypercapnia due to natural variability in pCO2 in its habitat. We show for the first time that some echinoderm species can actively compensate extracellular pH. Seawater pCO2 values of >200 Pa, which will occur in the Kattegat within this century during seasonal hypoxic events, can possibly only be endured for a short time period of a few weeks. Increases in anthropogenic CO2 emissions and leakages from potential sub-seabed CO2 storage (CCS) sites thus impose a threat to the ecologically and economically important species S. droebachiensis.
Resumo:
Vermetids form reefs in sub-tropical and warm-temperate waters that protect coasts from erosion, regulate sediment transport and accumulation, serve as carbon sinks and provide habitat for other species. The gastropods that form these reefs brood encapsulated larvae; they are threatened by rapid environmental changes since their ability to disperse is very limited. We used transplant experiments along a natural CO2 gradient to assess ocean acidification effects on the reef-building gastropod Dendropoma petraeum. We found that although D. petraeum were able to reproduce and brood at elevated levels of CO2, recruitment success was adversely affected. Long-term exposure to acidified conditions predicted for the year 2100 and beyond caused shell dissolution and a significant increase in shell Mg content. Unless CO2 emissions are reduced and conservation measures taken, our results suggest these reefs are in danger of extinction within this century, with significant ecological and socioeconomic ramifications for coastal systems.
Resumo:
Continuous anthropogenic CO2 emissions to the atmosphere and uptake by the oceans will cause a reduction of seawater pH and saturation state (Omega) of CaCO3 minerals from which marine calcifiers build their shells and skeletons. Sea urchins use the most soluble form of calcium carbonate, high-magnesium calcite, to build their skeleton, spines and grazing apparatus. In order to highlight the effects of increased pCO2 on the test thickness and carbonate elemental composition of juvenile sea urchins and potential differences in their responses linked to the diet, we performed a laboratory experiment on juvenile Paracentrotus lividus, grazing on calcifying (Corallina elongata) and non-calcifying (Cystoseira amentacea, Dictyota dichotoma) macroalgae, under different pH (corresponding to pCO2 values of 390, 550, 750 and 1000 µatm). Results highlighted the importance of the diet in determining sea urchin size irrespectively of the pCO2 level, and the relevance of macroalgal diet in modulating urchin Mg/Ca ratio. The present study provides relevant clues both in terms of the mechanism of mineral incorporation and in terms of bottom-up processes (algal diet) affecting top-down ones (fish predation) in rocky subtidal communities
Resumo:
Ocean acidification is the suite of chemical changes to the carbonate system of seawater as a consequence of anthropogenic carbon dioxide (CO2) emissions. Despite a growing body of evidences demonstrating the negative effects of ocean acidification on marine species, the consequences at the ecosystem level are still unclear. One factor limiting our ability to upscale from species to ecosystem is the poor mechanistic understanding of the functional consequences of the observed effects on organisms. This is particularly true in the context of species interactions. The aim of this work was to investigate the functional consequence of the exposure of a prey (the mussel Brachidontes pharaonis) to ocean acidification for both the prey and its predator (the crab Eriphia verrucosa). Mussels exposed to pH 7.5 for >4 weeks showed significant decreases in condition index and in mechanical properties (65% decrease in maximum breaking load) as compared with mussels acclimated to pH 8.0. This translated into negative consequences for the mussel in presence of the predator crab. The crab feeding efficiency increased through a significant 27% decrease in prey handling time when offered mussels acclimated to the lowest pH. The predator was also negatively impacted by the acclimation of the prey, probably as a consequence of a decreased food quality. When fed with prey acclimated under decreased pH for 3 months, crab assimilation efficiency significantly decreased by 30% and its growth rate was 5 times slower as compared with crab fed with mussels acclimated under high pH. Our results highlight the important to consider physiological endpoints in the context of species interactions.
Resumo:
Ocean acidification is thought to be a major threat to coral reefs: laboratory evidence and CO2 seep research has shown adverse effects on many coral species, although a few are resilient. There are concerns that cold-water corals are even more vulnerable as they live in areas where aragonite saturation (Omega ara) is lower than in the tropics and is falling rapidly due to CO2 emissions. Here, we provide laboratory evidence that net (gross calcification minus dissolution) and gross calcification rates of three common cold-water corals, Caryophyllia smithii, Dendrophyllia cornigera, and Desmophyllum dianthus, are not affected by pCO2 levels expected for 2100 (pCO2 1058 µatm, Omega ara 1.29), and nor are the rates of skeletal dissolution in D. dianthus. We transplanted D. dianthus to 350 m depth (pHT 8.02; pCO2 448 µatm, Omega ara 2.58) and to a 3 m depth CO2 seep in oligotrophic waters (pHT 7.35; pCO2 2879 µatm, Omega ara 0.76) and found that the transplants calcified at the same rates regardless of the pCO2 confirming their resilience to acidification, but at significantly lower rates than corals that were fed in aquaria. Our combination of field and laboratory evidence suggests that ocean acidification will not disrupt cold-water coral calcification although falling aragonite levels may affect other organismal physiological and/or reef community processes.
Resumo:
Ocean acidification can have negative repercussions from the organism to ecosystem levels. Octocorals deposit high-magnesium calcite in their skeletons, and according to different models, they could be more susceptible to the depletion of carbonate ions than either calcite or aragonite-depositing organisms. This study investigated the response of the gorgonian coral Eunicea fusca to a range of CO2 concentrations from 285 to 4,568 ppm (pH range 8.1-7.1) over a 4-week period. Gorgonian growth and calcification were measured at each level of CO2 as linear extension rate and percent change in buoyant weight and calcein incorporation in individual sclerites, respectively. There was a significant negative relationship for calcification and CO2 concentration that was well explained by a linear model regression analysis for both buoyant weight and calcein staining. In general, growth and calcification did not stop in any of the concentrations of pCO2; however, some of the octocoral fragments experienced negative calcification at undersaturated levels of calcium carbonate (>4,500 ppm) suggesting possible dissolution effects. These results highlight the susceptibility of the gorgonian coral E. fusca to elevated levels of carbon dioxide but suggest that E. fusca could still survive well in mid-term ocean acidification conditions expected by the end of this century, which provides important information on the effects of ocean acidification on the dynamics of coral reef communities. Gorgonian corals can be expected to diversify and thrive in the Atlantic-Eastern Pacific; as scleractinian corals decline, it is likely to expect a shift in these reef communities from scleractinian coral dominated to octocoral/soft coral dominated under a "business as usual" scenario of CO2 emissions.
Resumo:
Sensitivity of marine crustaceans to anthropogenic CO2 emissions and the associated acidification of the oceans may be less than that of other, especially lower, invertebrates. However, effects on critical transition phases or carry-over effects between life stages have not comprehensively been explored. Here we report the impact of elevated seawater PCO2 values (3100 µatm) on Hyas araneus during the last 2 weeks of their embryonic development (pre-hatching phase) and during development while in the consecutive zoea I and zoea II larval stages (post-hatching phase). We measured oxygen consumption, dry weight, developmental time and mortality in zoea I to assess changes in performance. Feeding rates and survival under starvation were investigated at different temperatures to detect differences in thermal sensitivities of zoea I and zoea II larvae depending on pre-hatch history. When embryos were pre-exposed to elevated PCO2 during maternal care, mortality increased about 60% under continued CO2 exposure during the zoea I phase. The larvae that moulted into zoea II, displayed a developmental delay by about 20 days compared to larvae exposed to control PCO2 during embryonic and zoeal phases. Elevated PCO2 caused a reduction in zoea I dry weight and feeding rates, while survival of the starved larvae was not affected by the seawater CO2 concentration. In conclusion, CO2 effects on egg masses under maternal care carried over to the first larval stages of crustaceans and reduced their survival and development to levels below those previously reported in studies exclusively focussing on acute PCO2 effects on the larval stages.
Resumo:
The Asia-Pacific Region has enjoyed remarkable economic growth in the last three decades. This rapid economic growth can be partially attributed to the global spread of production networks, which has brought about major changes in spatial interdependence among economies within the region. By applying an Input-Output based spatial decomposition technique to the Asian International Input-Output Tables for 1985 and 2000, this paper not only analyzes the intrinsic mechanism of spatial economic interdependence, but also shows how value added, employment and CO2 emissions induced are distributed within the international production networks.
Resumo:
The literature on trade openness, economic development, and the environment is largely inconclusive about the environmental consequences of trade. This study review previous studies focusing on treating trade and income as endogenous and estimating the overall impact of trade openness on environmental quality using the instrumental variables technique. The results show that whether or not trade has a beneficial effect on the environment varies depending on the pollutant and the country. Trade is found to benefit the environment in OECD countries. It has detrimental effects, however, on sulfur dioxide (SO2) and carbon dioxide (CO2) emissions in non-OECD countries, although it does lower biochemical oxygen demand (BOD) emissions in these countries. The results also find the impact is large in the long term, after the dynamic adjustment process, although it is small in the short term.
Resumo:
The European construction industry is supposed to consume the 40% of the natural European resources and to generate the 40% of the European solid waste. Conscious of the great damage being suffered by the environment because of construction activity, this work tries to provide the building actors with a new tool to improve the current situation. The tool proposed is a model for the comprehensive evaluation of construction products by determining their environmental level. In this research, the environmental level of a construction product has been defined as its quality of accomplishing the construction requirements needed by causing the minimum ecological impact in its surrounding environment. This information allows building actors to choose suitable materials for building needs and also for the environment, mainly in the project stage or on the building site, contributing to improve the relationship between buildings and environment. For the assessment of the environmental level of construction products, five indicators have been identified regarding their global environmental impact through the product life cycle: CO2 emissions provoked during their production, volume and toxicity of waste generated on the building site, durability and recycling capacity after their useful life. Therefore, the less environmental impact one construction product produces, the higher environmental level performs. The model has been tested in 30 construction products that include environmental criteria in their description. The results obtained will be discussed in this article. Furthermore, this model can lay down guidelines for the selection of ecoefficient construction products and the design of new eco-competitive and eco-committed ones
Resumo:
The analysis of the viability of Hydrogen production without CO2 emissions is one of the most challenging activities that have been initiated for a sustainable energy supply. As one of the tracks to fulfil such objective, direct methane cracking has been analysed experimentally to assess the scientific viability and reaction characterization in a broad temperature range, from 875 to 1700 ?C. The effect of temperature, sweeping/carrier gas fraction proposed in some concepts, methane flow rate, residence time, and tube material and porosity has been analysed. The aggregation of carbon black particles to the reaction tube is the main technological show-stopper that has been identified.