996 resultados para CM-choke
Resumo:
The surface detector array of the Pierre Auger Observatory is sensitive to Earth-skimming tau neutrinos that interact in Earth's crust. Tau leptons from nu(tau) charged-current interactions can emerge and decay in the atmosphere to produce a nearly horizontal shower with a significant electromagnetic component. The data collected between 1 January 2004 and 31 August 2007 are used to place an upper limit on the diffuse flux of nu(tau) at EeV energies. Assuming an E(nu)(-2) differential energy spectrum the limit set at 90% C. L. is E(nu)(2)dN(nu tau)/dE(nu) < 1: 3 x 10(-7) GeV cm(-2) s(-1) sr(-1) in the energy range 2 x 10(17) eV< E(nu) < 2 x 10(19) eV.
Resumo:
Spectral changes of Na(2) in liquid helium were studied using the sequential Monte Carlo-quantum mechanics method. Configurations composed by Na(2) surrounded by explicit helium atoms sampled from the Monte Carlo simulation were submitted to time-dependent density-functional theory calculations of the electronic absorption spectrum using different functionals. Attention is given to both line shift and line broadening. The Perdew, Burke, and Ernzerhof (PBE1PBE, also known as PBE0) functional, with the PBE1PBE/6-311++G(2d,2p) basis set, gives the spectral shift, compared to gas phase, of 500 cm(-1) for the allowed X (1)Sigma(+)(g) -> B (1)Pi(u) transition, in very good agreement with the experimental value (700 cm(-1)). For comparison, cluster calculations were also performed and the first X (1)Sigma(+)(g) -> A (1)Sigma(+)(u) transition was also considered.
Resumo:
The solvent effects on the low-lying absorption spectrum and on the (15)N chemical shielding of pyrimidine in water are calculated using the combined and sequential Monte Carlo simulation and quantum mechanical calculations. Special attention is devoted to the solute polarization. This is included by an iterative procedure previously developed where the solute is electrostatically equilibrated with the solvent. In addition, we verify the simple yet unexplored alternative of combining the polarizable continuum model (PCM) and the hybrid QM/MM method. We use PCM to obtain the average solute polarization and include this in the MM part of the sequential QM/MM methodology, PCM-MM/QM. These procedures are compared and further used in the discrete and the explicit solvent models. The use of the PCM polarization implemented in the MM part seems to generate a very good description of the average solute polarization leading to very good results for the n-pi* excitation energy and the (15)N nuclear chemical shield of pyrimidine in aqueous environment. The best results obtained here using the solute pyrimidine surrounded by 28 explicit water molecules embedded in the electrostatic field of the remaining 472 molecules give the statistically converged values for the low lying n-pi* absorption transition in water of 36 900 +/- 100 (PCM polarization) and 36 950 +/- 100 cm(-1) (iterative polarization), in excellent agreement among one another and with the experimental value observed with a band maximum at 36 900 cm(-1). For the nuclear shielding (15)N the corresponding gas-water chemical shift obtained using the solute pyrimidine surrounded by 9 explicit water molecules embedded in the electrostatic field of the remaining 491 molecules give the statistically converged values of 24.4 +/- 0.8 and 28.5 +/- 0.8 ppm, compared with the inferred experimental value of 19 +/- 2 ppm. Considering the simplicity of the PCM over the iterative polarization this is an important aspect and the computational savings point to the possibility of dealing with larger solute molecules. This PCM-MM/QM approach reconciles the simplicity of the PCM model with the reliability of the combined QM/MM approaches.
Resumo:
A combined and sequential use of Monte Carlo simulations and quantum mechanical calculations is made to analyze the spectral shift of the lowest pi-pi* transition of phenol in water. The solute polarization is included using electrostatic embedded calculations at the MP2/aug-cc-pVDZ level giving a dipole moment of 2.25 D, corresponding to an increase of 76% compared to the calculated gas-phase value. Using statistically uncorrelated configurations sampled from the MC simulation,first-principle size-extensive calculations are performed to obtain the solvatochromic shift. Analysis is then made of the origin of the blue shift. Results both at the optimized geometry and in room-temperature liquid water show that hydrogen bonds of water with phenol promote a red shift when phenol is the proton-donor and a blue shift when phenol is the proton-acceptor. In the case of the optimized clusters the calculated shifts are in very good agreement with results obtained from mass-selected free jet expansion experiments. In the liquid case the contribution of the solute-solvent hydrogen bonds partially cancels and the total shift obtained is dominated by the contribution of the outer solvent water molecules. Our best result, including both inner and outer water molecules, is 570 +/- 35 cm(-1), in very good agreement with the small experimental shift of 460 cm(-1) for the absorption maximum.
Resumo:
A new target station providing Fourier transform infrared (FT-IR) spectroscopy and residual gas analysis (RGA) for in situ observation of ion-induced changes in polymers has been installed at the GSI Helmholtz Centre for Heavy Ion Research. The installations as well as first in situ measurements at room temperature are presented here. A foil of polyimide Kapton HN (R) was irradiated with 1.1 GeV Au ions. During irradiation several in situ FT-IR spectra were recorded. Simultaneously outgassing degradation products were detected with the RGA. In the IR spectra nearly all bands decrease due to the degradation of the molecular structure. In the region from 3000 to 2700 cm(-1) vibration bands of saturated hydrocarbons not reported in literature so far became visible. The outgassing experiments show a mixture of C(2)H(4), CO, and N(2) as the main outgassing components of polyimide. The ability to combine both analytical methods and the opportunity to measure a whole fluence series within a single experiment show the efficiency of the new setup. (C) 2011 American Institute of Physics. [doi:10.1063/1.3571301]
Resumo:
The structural, dielectric, and vibrational properties of pure and rare earth (RE)-doped Ba(0.77) Ca(0.23)TiO(3) (BCT23; RE = Nd, Sm, Pr, Yb) ceramics obtained via solid-state reaction were investigated. The pure and RE-doped BCT23 ceramics sintered at 1450 degrees C in air for 4 h showed a dense microstructure in all ceramics. The use of RE ions as dopants introduced lattice-parameter changes that manifested in the reduction of the volume of the unit cell. RE-doped BCT23 samples exhibit a more homogenous microstructure due to the absence of a Ti-rich phase in the grain boundaries as demonstrated by scanning electron microscopy imaging. The incorporation of REs led to perturbations of the local symmetry of TiO(6) octahedra and the creation of a new Raman mode. The results of Raman scattering measurements indicated that the Curie temperature of the ferroelectric phase transition depends on the RE ion and ion content, with the Curie temperature shifting toward lower values as the RE content increases, with the exception of Yb(3+) doping, which did not affect the ferroelectric phase transition temperature. The phase transition behavior is explained using the standard soft mode model. Electronic paramagnetic resonance measurements showed the existence of Ti vacancies in the structure of RE-doped BCT23. Defects are created via charge compensation mechanisms due to the incorporation of elements with a different valence state relative to the ions of the pure BCT23 host. It is concluded that the Ti vacancies are responsible for the activation of the Raman mode at 840 cm(-1), which is in agreement with lattice dynamics calculations. (c) 2011 American Institute of Physics. [doi:10.1063/1.3594710]
Resumo:
We report experimental and theoretical studies of the two-photon absorption spectrum of two nitrofuran derivatives: nitrofurantoine, (1-(5-nitro-2-furfurilideneamine)-hidantoine) and quinifuryl, 2-(5`-nitro-2`-furanyl) ethenyl-4-{N-[4`-(N,N-diethylamino)-1`-methylbutyl]carbamoyl} quinoline. Both molecules are representative of a family of 5-nitrofuran-ethenyl-quinoline drugs that have been demonstrated to display high toxicity to various species of transformed cells in the dark. We determine the two-photon absorption cross-section for both compounds, from 560 to 880 nm, which present peak values of 64 GM for quinifuryl and 20 GM for nitrofurantoine (1 GM = 1 x 10(-50) cm(4).s.photon(-1)). Besides, theoretical calculations employing the linear and quadratic response functions were carried out at the density functional theory level to aid the interpretations of the experimental results. The theoretical results yielded oscillator strengths, two-photon transition probabilities, and transition energies, which are in good agreement with the experimental data. A higher number of allowed electronic transitions was identified for quinifuryl in comparison to nitrofurantoine by the theoretical calculations. Due to the planar structure of both compounds, the differences in the two-photon absorption cross-section values are a consequence of their distinct conjugation lengths. (c) 2011 American Institute of Physics. [doi:10.1063/1.3514911]
Resumo:
Background data: Technology and physical exercise can enhance physical performance during aging. Objective: The purpose of this study was to investigate the effects of infrared-light-emitting diode (LED) illumination (850 nm) applied during treadmill training. Materials and methods: Twenty postmenopausal women participated in this study. They were randomly divided into two groups. The LED group performed treadmill training associated with infrared-LED illumination (n = 10) and the control group performed only treadmill training (n = 10). The training was performed during 3 months, twice a week during 30 min at intensities between 85 and 90% of maximal heart rate. The irradiation parameters were 31 mW/cm(2), treatment time 30 min, 14,400 J of total energy and 55.8 J/cm(2) of fluence. Physiological, biomechanical, and body composition parameters were measured at the baseline and after 3 months. Results: Both groups improved the time of tolerance limit (Tlim) (p < 0.05) during submaximal constant-speed testing. The peak torque did not differ between groups. However, the results showed significantly higher values of power [from 56 +/- 10 to 73 +/- 8W (p = 0.002)] and total work [from 1,537 +/- 295 to 1,760 +/- 262 J (p = 0.006)] for the LED group when compared to the control group [power: from 58 +/- 14 to 60 +/- 15W (p >= 0.05) and total work: from 1,504 +/- 404 to 1,622 +/- 418 J (p >= 0.05)]. The fatigue significantly increased for the control group [from 51 +/- 6 to 58 +/- 5 % (p = 0.04)], but not for the LED group [from 60 +/- 10 to 60 +/- 4 % (p >= 0.05)]. No significant differences in body composition were observed for either group. Conclusions: Infrared-LED illumination associated with treadmill training can improve muscle power and delay leg fatigue in postmenopausal women.
Resumo:
Deoxyribonucleic acid based gel solid electrolytes were prepared and their electric properties were characterized. Their ionic conductivity is in the range of 10(-4)-10(-5) S/cm at room temperature and increases linearly in function of temperature, obeying an Arrhenius-like relationship. The present study, combined with the literature data, suggests that the electrical conduction mechanism in these membranes involve ion motion and/or charge hopping, promoted most likely by a significant interaction between the membrane components. The good conductivity results, as found here, together with the good transparency and good adhesion to the electrodes show that the DNA-based gel polymer electrolytes are very promising materials for application in various electrochromic devices. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3610951]
Resumo:
Objective: The aim of this study was the evaluation of two different photosensitizers activated by red light emitted by light-emitting diodes (LEDs) in the decontamination of carious bovine dentin. Materials and Methods: Fifteen bovine incisors were used to obtain dentin samples which were immersed in brain-heart infusion culture medium supplemented with 1% glucose, 2% sucrose, and 1% young primary culture of Lactobacillus acidophilus 108 CFU/mL and Streptococcus mutans 108 CFU/mL for caries induction. Three different concentrations of the Photogem solution, a hematoporphyrin derivative (1, 2, and 3 mg/mL) and two different concentrations of toluidine blue O (TBO), a basic dye (0.025 and 0.1 mg/mL) were used. To activate the photosensitizers two different light exposure times were used: 60 sec and 120 sec, corresponding respectively to the doses of 24 J/cm(2) and 48 J/cm(2). Results: After counting the numbers of CFU per milligram of carious dentin, we observed that the use of LED energy in association with Photogem or TBO was effective for bacterial reduction in carious dentin, and that the greatest effect on S. mutans and L. acidophilus was obtained with TBO at 0.1 mg/mL and a dose of 48 J/cm(2). It was also observed that the overall toxicity of TBO was higher than that of Photogem, and that the phototoxicity of TBO was higher than that of Photogem. Conclusion: Based on our data we propose a mathematical model for the photodynamic effect when different photosensitizer concentrations and light doses are used.
Resumo:
We report electron-paramagnetic resonance (EPR) studies at similar to 9.5 GHz (X band) and similar to 34 GHz (Q band) of powder and single-crystal samples of the compound Cu(2)[TzTs](4) [N-thiazol-2-yl-toluenesulfonamidatecopper(II)], C(40)H(36)Cu(2)N(8)O(8)S(8), having copper(II) ions in dinuclear units. Our data allow determining an antiferromagnetic interaction J(0)=(-113 +/- 1) cm(-1) (H(ex)=-J(0)S(1)center dot S(2)) between Cu(II) ions in the dinuclear unit and the anisotropic contributions to the spin-spin coupling matrix D (H(ani)=S(1)center dot D center dot S(2)), a traceless symmetric matrix with principal values D/4=(0.198 +/- 0.003) cm(-1) and E/4=(0.001 +/- 0.003) cm(-1) arising from magnetic dipole-dipole and anisotropic exchange couplings within the units. In addition, the single-crystal EPR measurements allow detecting and estimating very weak exchange couplings between neighbor dinuclear units, with an estimated magnitude parallel to J(')parallel to=(0.060 +/- 0.015) cm(-1). The interactions between a dinuclear unit and the ""environment"" of similar units in the structure of the compound produce a spin dynamics that averages out the intradinuclear dipolar interactions. This coupling with the environment leads to decoherence, a quantum phase transition that collapses the dipolar interaction when the isotropic exchange coupling with neighbor dinuclear units equals the magnitude of the intradinuclear dipolar coupling. Our EPR experiments provide a new procedure to follow the classical exchange-narrowing process as a shift and collapse of the line structure (not only as a change of the resonance width), which is described with general (but otherwise simple) theories of magnetic resonance. Using complementary procedures, our EPR measurements in powder and single-crystal samples allow measuring simultaneously three types of interactions differing by more than three orders of magnitude (between 113 cm(-1) and 0.060 cm(-1)).
Resumo:
The control of molecular architectures has been a key factor for the use of Langmuir-Blodgett (LB) films in biosensors, especially because biomolecules can be immobilized with preserved activity. In this paper we investigated the incorporation of tyrosinase (Tyr) in mixed Langmuir films of arachidic acid (AA) and a lutetium bisphthalocyanine (LuPc(2)), which is confirmed by a large expansion in the surface pressure isotherm. These mixed films of AA-LuPc(2) + Tyr could be transferred onto ITO and Pt electrodes as indicated by FTIR and electrochemical measurements, and there was no need for crosslinking of the enzyme molecules to preserve their activity. Significantly, the activity of the immobilised Tyr was considerably higher than in previous work in the literature, which allowed Tyr-containing LB films to be used as highly sensitive voltammetric sensors to detect pyrogallol. Linear responses have been found up to 400 mu M, with a detection limit of 4.87 x 10(-2) mu M (n = 4) and a sensitivity of 1.54 mu A mu M(-1) cm(-2). In addition, the Hill coefficient (h = 1.27) indicates cooperation with LuPc(2) that also acts as a catalyst. The enhanced performance of the LB-based biosensor resulted therefore from a preserved activity of Tyr combined with the catalytic activity of LuPc(2), in a strategy that can be extended to other enzymes and analytes upon varying the LB film architecture.
Resumo:
Three new bimetallic oxamato-based magnets with the proligand 4,5-dimethyl-1,2-phenylenebis-(oxamato) (dmopba) were synthesized using water or dimethylsulfoxide (DMSO) as solvents. Single crystal X-ray diffraction provided structures for two of them: [MnCu(dmopba)(H(2)O)(3)]n center dot 4nH(2)O (1) and [MnCu(dmopba)(DMSO)(3)](n center dot)nDMSO (2). The crystalline structures for both 1 and 2 consist of linearly ordered oxamato-bridged Mn(II)Cu(II) bimetallic chains. The magnetic characterization revealed a typical behaviour of ferrimagnetic chains for 1 and 2. Least-squares fits of the experimental magnetic data performed in the 300-20 K temperature range led to J(MnCu) = -27.9 cm(-1), g(Cu) = 2.09 and g(Mn) = 1.98 for 1 and J(MnCu) = -30.5 cm(-1), g(Cu) = 2.09 and g(Mn) = 2.02 for 2 (H = -J(MnCu)Sigma S(Mn, i)(S(Cu, i) + S(Cu, i-1))). The two-dimensional ferrimagnetic system [Me(4)N](2n){Co(2)[Cu(dmopba)](3)}center dot 4nDMSO center dot nH(2)O (3) was prepared by reaction of Co(II) ions and an excess of [Cu(dmopba)](2-) in DMSO. The study of the temperature dependence of the magnetic susceptibility as well as the temperature and field dependences of the magnetization revealed a cluster glass-like behaviour for 3.
Resumo:
We describe the measurement of the depth of maximum, X(max), of the longitudinal development of air showers induced by cosmic rays. Almost 4000 events above 10(18) eV observed by the fluorescence detector of the Pierre Auger Observatory in coincidence with at least one surface detector station are selected for the analysis. The average shower maximum was found to evolve with energy at a rate of (106 +/- 35-21) g/cm(2)/decade below 10(18.24) +/- (0.05) eV, and d24 +/- 3 g/cm(2)/ecade above this energy. The measured shower-to-shower fluctuations decrease from about 55 to 26 g/cm(2). The interpretation of these results in terms of the cosmic ray mass composition is briefly discussed.
Resumo:
In this work we performed a thorough spectroscopic and thermo-optical investigation of yttrium aluminoborate glasses doped with neodymium ions. A set of samples, prepared by the conventional melt-quenching technique and with Nd(2)O(3) concentrations varying from 0.1 to 0.75 mol %, were characterized by ground state absorption, photoluminescence, excited state lifetime measurements, and thermal lens technique. For the neodymium emission at 1064 nm ((4)F(3/2) -> (4)I(11/2) transition), no significant luminescence concentration quenching was observed and the experimental lifetime values ranged around 70 mu s. The obtained values of thermal conductivity and diffusivity of approximately 10.3 x 10(-3) W / cm K and 4.0 x 10(-3) cm(2) / s, respectively, are comparable to those of commercial laser glasses. Moreover, the fluorescence quantum efficiency of the glasses, calculated using the Judd-Ofelt formalism and luminescence decay, lies in the range from 0.28 to 0.32, larger than the typical values obtained for Nd(3+) doped YAl(3)(BO(3))(4) crystals. (c) 2009 American Institute of Physics. [DOI: 10.1063/1.3176503]