941 resultados para CHIRAL ASYMMETRY
Resumo:
This dissertation focuses on military cooperation between the United States and its special allies. It argues that alliance expectations determine the level of military cooperation, while two intervening variables - the level of government cohesion and military capabilities - determine its implementation. This study also shows how secondary states deploy strategies to overcome power asymmetries through bilateral concessions, international organizations and by appealing to principle. The focus of the research is on special allies, as they have the most to gain or lose by going along with American plans. My contention is that secondary allies can rarely influence the dominant ally decisively, but they can act autonomously and resist to pressures exerted by the stronger alliance partner. The argument builds on three central claims. First, power asymmetries between allies translate into different assessments of international threats. Second, when disagreements over threats arise, the outcome of intra-alliance bargaining is not necessarily dictated by the preferences of the stronger power. Third, secondary states, as opposed to the dominant partner, face unique constraints when facing major foreign policy decisions, i.e. they face a trade-off between establishing a credible reputation as an alliance partner in a politically feasible way while minimizing domestic audience costs. To examine the theoretical puzzle presented by asymmetric military cooperation, I introduce a causal explanation that builds on neoclassical realism, to zone in on the interaction between systemic and domestic variables. My research makes a contribution to alliance theory and foreign policy decision-making by studying how special allies respond to American decisions in times of threat and how systemic constraints are channeled through state-level variables. To investigate the causal link between threat perception, alliance expectations and domestic constraints, this study relies on the method of structured focused comparison with three detailed case studies. The focus is on the initial decision made by special allies regarding whether or not to participle in joint mobilization with the United States. The decision-making process is presented from the perspective of secondary allied states and measures the explanatory factors that motivated the decision on military cooperation. The case studies are the UK, Canada and Australia’s response to the war in Afghanistan and the war in Iraq during the period of 2001 to 2003.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
The value of the lateral bending test is important in the assessment of spinal curve mobility and prediction of surgical outcome in the treatment of adolescent idiopathic scoliosis (AIS). However, radiographic bending tests are unable to assess the reducibility of trunk asymmetry. This study aims to exploit surface topography measurement in order to evaluate the changes in shape of the trunk (a) between bending and neutral standing positions, and (b) between standing pre- and post-operative visits, in a cohort of adolescents with AIS having undergone surgical correction; and to correlate the differences measured in cases (a) and (b). Our cohort includes 13 patients with right thoracic AIS. Each patient had their 3D trunk surface digitized with a multi-head InSpeck system in standing posture (at the pre-op and post-op visits) and in maximum voluntary right and left bending (at the pre-op visit). We developed a novel trunk shape analysis method which produces a set of inclined trunk cross-sections allowing comparison between different postures. Two asymmetry indices, trunk rotation (TR) and back surface rotation (BSR), were computed in all cases and a statistical analysis was performed. Our correlation study (Pearson test) showed fair correlations in most cases between the changes in side-bending and those post-surgery, with the strongest relationship (p-value < 0.01) when combining the TR measurements from both bendings. These results provide evidence that the bending test can be used to assess trunk asymmetry reducibility. The proposed approach could provide a non-invasive trunk asymmetry reducibility test for routine clinical use in AIS surgery planning.
Resumo:
Study Design Cross-sectional descriptive study. Objectives To characterize breast asymmetry (BA), as defined by breast volume difference, in girls with significant adolescent idiopathic scoliosis (AIS), using magnetic resonance imaging (MRI). Summary and Background BA is a frequent concern among girls with AIS. It is commonly believed that this results from chest wall deformity. Although many women exhibit physiological BA, the prevalence is not known in adolescents and it remains unclear if it is more frequent in AIS. Breasts vary in shape and size and many ways of measuring them have been explored. MRI shows the highest precision at defining breast tissue. Methods Thirty patients were enrolled on the basis of their thoracic curvature, skeletal and breast maturity, without regard to their perception on their BA. MRI acquisitions were performed in prone with a 1.5-Tesla system using a 16-channel breast coil. Segmentation was achieved using the ITK-SNAP 2.4.0 software and subsequently manually refined. Results The mean left breast volume (528.32 ± 205.96 cc) was greater compared with the mean right breast volume (495.18 ± 170.16 cc) with a significant difference between them. The mean BA was found to be 8.32% ± 6.43% (p < .0001). A weak positive correlation was observed between BA and thoracic Cobb angle (0.177, p = .349) as well as thoracic gibbosity angle (0.289, p = .122). The left breast was consistently larger in 65.5% of the patients. Twenty patients (66.7%) displayed BA ≥5%. Conclusions We have described BA in patients with significant AIS using MRI. This method is feasible, objective, and very precise. The majority of patients had a larger left breast, which could compound the apparent BA secondary to trunk rotation. In many cases, BA is present independently of thoracic deformity. This knowledge will assist in counseling AIS patients in regards to their concerns with BA.
Resumo:
The present work emphasizes the use of chirality as an efficient tool to synthesize new types of second order nonlinear materials. Second harmonic generation efficiency (SHG) is used as a measure of second order nonlinear response. Nonlinear optical properties of polymers have been studied theoretically and experimentally. Polymers were designed theoretically by ab initio and semiempirical calculations. All the polymeric systems have been synthesized by condensation polymerization. Second harmonic generation efficiency of the synthesized systems has been measured experimentally by Kurtz and Perry powder method
Resumo:
A new class of chiral polyurethanes containing amido linkages in the polymer backbone have been synthesized by reacting toluene diisocyanate with isosorbide (IS) chiral moiety and the chromophores [N,N0-ethane- 1,2-diyl bis(6-hydroxy hexanamide), N,N0-butane-1,4-diyl bis(6-hydroxy hexanamide) and N,N0-hexane-1,6-diyl bis (6-hydroxy hexanamide)]. The corresponding chromophores were obtained by the aminolysis of e-caprolactone by using the diamines, diaminoethane, diaminobutane and diaminohexane, respectively. All the polymers were synthesized according to the symmetry conditions so as to obtain the non-centrosymmetric environment. A series of polyurethanes were synthesized by varying the chiral– chromophore composition. The polyurethanes developed were characterized by optical and thermal methods.
Resumo:
Climate model simulations of past and future climate invariably contain prescribed zonal mean stratospheric ozone. While the effects of zonal asymmetry in ozone have been examined in the Northern Hemisphere, much greater zonal asymmetry occurs in the Southern Hemisphere during the break up of the Antarctic ozone hole. We prescribe a realistic three-dimensional distribution of ozone in a high vertical resolution atmospheric model and compare results with a simulation containing zonal mean ozone. Prescribing the three dimensional ozone distribution results in a cooling of the stratosphere and upper troposphere comparable to that caused by ozone depletion itself. Our results suggest that changes in the zonal asymmetry of ozone have had important impacts on Southern Hemisphere climate, and will continue to do so in the future.
Resumo:
Matheron's usual variogram estimator can result in unreliable variograms when data are strongly asymmetric or skewed. Asymmetry in a distribution can arise from a long tail of values in the underlying process or from outliers that belong to another population that contaminate the primary process. This paper examines the effects of underlying asymmetry on the variogram and on the accuracy of prediction, and the second one examines the effects arising from outliers. Standard geostatistical texts suggest ways of dealing with underlying asymmetry; however, this is based on informed intuition rather than detailed investigation. To determine whether the methods generally used to deal with underlying asymmetry are appropriate, the effects of different coefficients of skewness on the shape of the experimental variogram and on the model parameters were investigated. Simulated annealing was used to create normally distributed random fields of different size from variograms with different nugget:sill ratios. These data were then modified to give different degrees of asymmetry and the experimental variogram was computed in each case. The effects of standard data transformations on the form of the variogram were also investigated. Cross-validation was used to assess quantitatively the performance of the different variogram models for kriging. The results showed that the shape of the variogram was affected by the degree of asymmetry, and that the effect increased as the size of data set decreased. Transformations of the data were more effective in reducing the skewness coefficient in the larger sets of data. Cross-validation confirmed that variogram models from transformed data were more suitable for kriging than were those from the raw asymmetric data. The results of this study have implications for the 'standard best practice' in dealing with asymmetry in data for geostatistical analyses. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Atmospheric general circulation model experiments have been performed to investigate how the significant zonal asymmetry in the Southern Hemisphere (SH) winter storm track is forced by sea surface temperature (SST) and orography. An experiment with zonally symmetric tropical SSTs expands the SH upper-tropospheric storm track poleward and eastward and destroys its spiral structure. Diagnosis suggests that these aspects of the observed storm track result from Rossby wave propagation from a wave source in the Indian Ocean region associated with the monsoon there. The lower-tropospheric storm track is not sensitive to this forcing. However, an experiment with zonally symmetric midlatitude SSTs exhibits a marked reduction in the magnitude of the maximum intensity of the lower-tropospheric storm track associated with reduced SST gradients in the western Indian Ocean. Experiments without the elevation of the South African Plateau or the Andes show reductions in the intensity of the major storm track downstream of them due to reduced cyclogenesis associated with the topography. These results suggest that the zonal asymmetry of the SH winter storm track is mainly established by stationary waves excited by zonal asymmetry in tropical SST in the upper troposphere and by local SST gradients in the lower troposphere, and that it is modified through cyclogenesis associated with the topography of South Africa and South America.
Resumo:
Previous theory and research in animals has identified the critical role that fetal testosterone (FT) plays in organizing sexually dimorphic brain development. However, to date there are no studies in humans directly testing the organizational effects of FT on structural brain development. In the current study we investigated the effects of FT on corpus callosum size and asymmetry. High-resolution structural magnetic resonance images (MRI) of the brain were obtained on 28 8-11-year-old boys whose exposure to FT had been previously measured in utero via amniocentesis conducted during the second trimester. Although there was no relationship between FT and midsaggital corpus callosum size, increasing FT was significantly related to increasing rightward asymmetry (e.g., Right>Left) of a posterior subsection of the callosum, the isthmus, that projects mainly to parietal and superior temporal areas. This potential organizational effect of FT on rightward callosal asymmetry may be working through enhancing the neuroprotective effects of FT and result in an asymmetric distribution of callosal axons. We suggest that this possible organizational effect of FT on callosal asymmetry may also play a role in shaping sexual dimorphism in functional and structural brain development, cognition, and behavior.