973 resultados para C-60-GAMMA-CYCLODEXTRIN
Resumo:
The present study investigates the critical role of deformation twinning and Bs-type shear bands in the evolution of deformation texture in a low stacking fault energy Ni-60Co alloy up to very large rolling strain (epsilon(t) approximate to 4). The alloy develops a strong brass-type rolling texture, and its formation is initiated at the early stages of deformation. Extensive twinning is observed at the intermediate stages of deformation, which causes significant texture reorientation towards alpha-fiber. A pseudo-in-situ electron back-scattered diffraction technique adopted to capture orientation changes within individual grains during the early stages suggests that twinning should be subsequently aided by crystallographic slip to attain alpha-fiber (< 1 1 0 >parallel to ND) orientations. Beyond 40% reduction, deformation is dominated by Bs-type shear bands, and the banding coincides with the evolution of < 1 1 1 >parallel to ND components. The volume fraction of shear bands is significant at higher strains, and crystallites within the bands preferentially show < 1 1 0 >parallel to ND components. The absence of the Cu {1 1 2}< 1 1 1 > component in the initial texture, and subsequently during rolling, indicates that, for the evolution of a brass-type texture, the presence of the Cu component is not a necessary condition. The final rolling texture is a synergistic effect of deformation twinning and shear banding. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Interferon-gamma (Ifn gamma), a known immunomodulatory cytokine, regulates cell proliferation and survival. In this study, the mechanisms leading to the selective susceptibility of some tumor cells to Ifn gamma were deciphered. Seven different mouse tumor cell lines tested demonstrated upregulation of MHC class I to variable extents with Ifn gamma; however, only the cell lines, H6 hepatoma and L929 fibrosarcoma, that produce higher amounts of nitric oxide (NO) and reactive oxygen species (ROS) are sensitive to Ifn gamma-induced cell death. NO inhibitors greatly reduce Ifn gamma-induced ROS; however, ROS inhibitors did not affect the levels of Ifn gamma-induced NO, demonstrating that NO regulates ROS. Consequently, NO inhibitors are more effective, compared to ROS inhibitors, in reducing Ifn gamma-induced cell death. Further analysis revealed that Ifn gamma induces peroxynitrite and 3-nitrotyrosine amounts and a peroxynitrite scavenger, FeTPPS, reduces cell death. Ifn gamma treatment induces the phosphorylation of c-jun N-terminal kinase (Jnk) in H6 and L929 but not CT26, a colon carcinoma cell line, which is resistant to Ifn gamma-mediated death. Jnk activation downstream to NO leads to induction of ROS, peroxynitrite and cell death in response to Ifn gamma. Importantly, three cell lines tested, i.e. CT26, EL4 and Neuro2a, that are resistant to cell death with Ifn gamma alone become sensitive to the combination of Ifn gamma and NO donor or ROS inducer in a peroxynitrite-dependent manner. Overall, this study delineates the key roles of NO as the initiator and Jnk, ROS, and peroxynitrite as the effectors during Ifn gamma-mediated cell death. The implications of these findings in the Ifn gamma-mediated treatment of malignancies are discussed. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The current manuscript describes conformational analysis of 15-membered cyclic tetrapeptides (CTPs), with alpha 3 delta architecture, containing sugar amino acids (SAA) having variation in the stereocenter at C5 carbon. Conformational analyses of both the series, in protected and deprotected forms, were carried out in DMSO-d(6) using various NMR techniques, supported by restrained MD calculations. It was intriguing to notice that the alpha 3 delta macrocycles got stabilized by both 10-membered beta-turn as well as a seven-membered gamma-turn, fused within the same macrocycle. The presence of fused sub-structures within a 15-membered macrocycle is rare to see. Also, the stereocenter variation at C5 did not affect the fused turn structures and exhibited similar conformations in both the series. The design becomes highly advantageous as fused reverse turn structures are occurring in the cyclic structure with minimalistic size macrocycle and this can be applied to develop suitable pharmacophores in the drug development process. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Interferon-gamma (Ifn gamma), a known immunomodulatory cytokine, regulates cell proliferation and survival. In this study, the mechanisms leading to the selective susceptibility of some tumor cells to Ifn gamma were deciphered. Seven different mouse tumor cell lines tested demonstrated upregulation of MHC class I to variable extents with Ifn gamma; however, only the cell lines, H6 hepatoma and L929 fibrosarcoma, that produce higher amounts of nitric oxide (NO) and reactive oxygen species (ROS) are sensitive to Ifn gamma-induced cell death. NO inhibitors greatly reduce Ifn gamma-induced ROS; however, ROS inhibitors did not affect the levels of Ifn gamma-induced NO, demonstrating that NO regulates ROS. Consequently, NO inhibitors are more effective, compared to ROS inhibitors, in reducing Ifn gamma-induced cell death. Further analysis revealed that Ifn gamma induces peroxynitrite and 3-nitrotyrosine amounts and a peroxynitrite scavenger, FeTPPS, reduces cell death. Ifn gamma treatment induces the phosphorylation of c-jun N-terminal kinase (Jnk) in H6 and L929 but not CT26, a colon carcinoma cell line, which is resistant to Ifn gamma-mediated death. Jnk activation downstream to NO leads to induction of ROS, peroxynitrite and cell death in response to Ifn gamma. Importantly, three cell lines tested, i.e. CT26, EL4 and Neuro2a, that are resistant to cell death with Ifn gamma alone become sensitive to the combination of Ifn gamma and NO donor or ROS inducer in a peroxynitrite-dependent manner. Overall, this study delineates the key roles of NO as the initiator and Jnk, ROS, and peroxynitrite as the effectors during Ifn gamma-mediated cell death. The implications of these findings in the Ifn gamma-mediated treatment of malignancies are discussed. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Crystals of Boc-gamma y(4)(R)Val-Val-OH undergo a reversible first-order single crystal to single crystal phase transition at T-c approximate to 205 K from the orthorhombic space group P22(1)2(1) (Z' = 1) to the monoclinic space group P2(1) (Z' = 2) with a hysteresis of similar to 2.1 K. The low-temperature monoclinic form is best described as a nonmerohedral twin with similar to 50% contributions from its two components. The thermal behavior of the dipeptide crystals was characterized by differential scanning calorimetry experiments. Visual changes in birefringence of the sample during heating and cooling cycles on a hot-stage microscope with polarized light supported the phase transition. Variable-temperature unit cell check measurements from 300 to 100 K showed discontinuity in the volume and cell parameters near the transition temperature, supporting the first-order behavior. A detailed comparison of the room-temperature orthorhombic form with the low-temperature (100 K) monoclinic form revealed that the strong hydrogen-bonding motif is retained in both crystal systems, whereas the non-covalent interactions involving side chains of the dipeptide differ significantly, leading to a small change in molecular conformation in the monoclinic form as well as a small reorientation of the molecules along the ac plane. A rigid-body thermal motion analysis (translation, libration, screw; correlation of translation and libration) was performed to study the crystal entropy. The reversible nature of the phase transition is probably the result of an interplay between enthalpy and entropy: the low-temperature monoclinic form is enthalpically favored, whereas the room-temperature orthorhombic form is entropically favored.
Resumo:
First-principles density functional theory has been used to evaluate the shear and cleavage strength in terms of Griffith work and generalized stacking fault energy (GSF) of (001) plane for gamma, gamma' and gamma-gamma' system as a function of distance from the gamma/gamma' interface. Calculation of Griffith work suggests higher cleavage energy for bulk gamma as compared to gamma' while the GSF calculation suggests higher shear strength for bulk gamma' as compared to gamma. It has been found that the shear strength of the cubic plane of the gamma/gamma' interface is marginally lower than those of bulk gamma and gamma' phases. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The paper presents the synthesis of a new class of gamma-gamma' cobalt-based superalloy that is free of tungsten as an alloying addition. It has much lower density and higher specific strength than the existing cobalt-based superalloys. The current superalloys have a base composition of Co-10Al and are further tuned by the addition of a binary combination of molybdenum and niobium, with the optimum composition of Co-10Al-5Mo-2Nb. The solvus temperature of the alloy (866 degrees C) can be further enhanced above 950 C by the addition of Ni to give the form Co-xNi-10Al-5Mo-2Nb, where x can be from 0 to 30 at.%. After heat treatment, these alloys exhibit a duplex microstructure with coherent cuboidal L1(2)-ordered precipitates (gamma') throughout the face-centred cubic matrix (gamma), yielding a microstructure that is very similar to nickel-based superalloys as well as recently developed Co-Al-W-based alloys. We show that the stability of the gamma' phase improves significantly with the nickel addition, which can be attributed to the increase in solvus temperature. A very high specific 0.2% proof stress of 94.3 MPa g(-1) cm(-3) at room temperature and 63.8 MPa g(-1) cm(-3) at 870 degrees C were obtained for alloy Co-30Ni-10Al-5Mo-2Nb. The remarkably high specific strength of these alloys makes this class of alloy a promising material for use at high temperature, including gas turbine applications. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
We present the first report of a tungsten-free cobalt-based superalloy having a composition Co-10Al-5Mo-2Nb. The alloy is strengthened by cuboidal precipitates of metastable Co-3(Al,Mo,Nb) distributed throughout the microstructure. The precipitates are coherent with the face-centred cubic gamma-Co matrix and possess ordered Ll(2) structure. The microstructure is identical to the popular gamma-gamma' type nickel-based superalloys and that of recently reported Co-Al-W-based alloys. Being tungsten free, the reported alloy has higher specific proof stress compared to existing cobalt-based superalloys. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Pure alpha-Al2O3 exhibits a very high degree of thermodynamical stability among all metal oxides and forms an inert oxide scale in a range of structural alloys at high temperatures. We report that amorphous Al2O3 thin films sputter deposited over crystalline Si instead show a surprisingly active interface. On annealing, crystallization begins with nuclei of a phase closely resembling gamma-Alumina forming almost randomly in an amorphous matrix, and with increasing frequency near the substrate/film interface. This nucleation is marked by the signature appearance of sharp (400) and (440) reflections and the formation of a diffuse diffraction halo with an outer maximal radius of approximate to 0.23 nm enveloping the direct beam. The microstructure then evolves by a cluster-coalescence growth mechanism suggestive of swift nucleation and sluggish diffusional kinetics, while locally the Al ions redistribute slowly from chemisorbed and tetrahedral sites to higher anion coordinated sites. Chemical state plots constructed from XPS data and simple calculations of the diffraction patterns from hypothetically distorted lattices suggest that the true origins of the diffuse diffraction halo are probably related to a complex change in the electronic structure spurred by the a-gamma transformation rather than pure structural disorder. Concurrent to crystallization within the film, a substantially thick interfacial reaction zone also builds up at the film/substrate interface with the excess Al acting as a cationic source. (C) 2015 AIP Publishing LLC.
Resumo:
The crystal structures of nine peptides containing gamma(4)Val and gamma(4)Leu are described. The short sequences Boc-gamma(4)(R)Val](2)-OMe 1, Boc-gamma(4)(R)Val](3)-NHMe 2 and Boc-gamma(4)(S)Val-gamma(4)(R)Val-OMe 3 adopt extended apolar, sheet like structures. The tetrapeptide Boc-gamma(4)(R)Val](4)-OMe 4 adopts an extended conformation, in contrast to the folded C-14 helical structure determined previously for Boc-gamma(4)(R)Leu](4)-OMe. The hybrid alpha gamma sequence Boc-Ala-gamma(4)(R)Leu](2)-OMe 5 adopts an S-shaped structure devoid of intramolecular hydrogen bonds, with both alpha residues adopting local helical conformations. In sharp contrast, the tetrapeptides Boc-Aib-gamma(4)(S)Leu](2)-OMe 6 and Boc-Leu-gamma(4)(R)Leu](2)-OMe 7 adopt folded structures stabilized by two successive C-12 hydrogen bonds. gamma(4)Val residues have also been incorporated into the strand segments of a crystalline octapeptide, Boc-Leu-gamma(4)(R)Val-Val-(D)Pro-Gly-Leu-gamma(4)(R)Val-Val-OMe 8. The gamma gamma delta gamma tetrapeptide containing gamma(4)Val and delta(5)Leu residues adopts an extended sheet like structure. The hydrogen bonding pattern at gamma residues corresponds to an apolar sheet, while a polar sheet is observed at the lone delta residue. The transition between folded and extended structures at gamma residues involves a change of the torsion angle from the gauche to the trans conformation about the C-beta-C-alpha bond.
Resumo:
There are 3 to 4 million new hepatitis C virus (HCV) infections annually around the world, but no vaccine is available. Robust T-cell mediated responses are necessary for effective clearance of the virus, and DNA vaccines result in a cell-mediated bias. Adjuvants are often required for effective vaccination, but during natural lytic viral infections damage-associated molecular patterns (DAMPs) are released, which act as natural adjuvants. Hence, a vaccine that induces cell necrosis and releases DAMPs will result in cell-mediated immunity (CMI), similar to that resulting from natural lytic viral infection. We have generated a DNA vaccine with the ability to elicit strong CMI against the HCV nonstructural (NS) proteins (3, 4A, 4B, and 5B) by encoding a cytolytic protein, perforin (PRF), and the antigens on a single plasmid. We examined the efficacy of the vaccines in C57BL/6 mice, as determined by gamma interferon enzyme-linked immunosorbent spot assay, cell proliferation studies, and intracellular cytokine production. Initially, we showed that encoding the NS4A protein in a vaccine which encoded only NS3 reduced the immunogenicity of NS3, whereas including PRF increased NS3 immunogenicity. In contrast, the inclusion of NS4A increased the immunogenicity of the NS3, NS4B, andNS5B proteins, when encoded in a DNA vaccine that also encoded PRF. Finally, vaccines that also encoded PRF elicited similar levels of CMI against each protein after vaccination with DNA encoding NS3, NS4A, NS4B, and NS5B compared to mice vaccinated with DNA encoding only NS3 or NS4B/5B. Thus, we have developed a promising ``multiantigen'' vaccine that elicits robust CMI. IMPORTANCE Since their development, vaccines have reduced the global burden of disease. One strategy for vaccine development is to use commercially viable DNA technology, which has the potential to generate robust immune responses. Hepatitis C virus causes chronic liver infection and is a leading cause of liver cancer. To date, no vaccine is currently available, and treatment is costly and often results in side effects, limiting the number of patients who are treated. Despite recent advances in treatment, prevention remains the key to efficient control and elimination of this virus. Here, we describe a novel DNA vaccine against hepatitis C virus that is capable of inducing robust cell-mediated immune responses in mice and is a promising vaccine candidate for humans.
Resumo:
A facile ring opening of furans in furyl propargyl alcohols to the corresponding saturated gamma-keto esters is observed in the gold(III) chloride catalyzed reaction with MeOH. It is found that the ring opening of furan is driven by the intramolecular hydroalkoxylation. Mitigating the intramolecular hydroalkoxylation led to the expected conjugated enyne resulting from the dehydration. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Glioblastoma (GBM) is the most common malignant adult primary brain tumor. We profiled 724 cancer-associated proteins in sera of healthy individuals (n = 27) and GBM (n = 28) using antibody microarray. While 69 proteins exhibited differential abundance in GBM sera, a three-marker panel (LYAM1, BHE40 and CRP) could discriminate GBM sera from that of healthy donors with an accuracy of 89.7% and p < 0.0001. The high abundance of C-reactive protein (CRP) in GBM sera was confirmed in 264 independent samples. High levels of CRP protein was seen in GBM but without a change in transcript levels suggesting a non-tumoral origin. Glioma-secreted Interleukin 6 (IL6) was found to induce hepatocytes to secrete CRP, involving JAK-STAT pathway. The culture supernatant from CRP-treated microglial cells induced endothelial cell survival under nutrient-deprivation condition involving CRP-Fc gamma RIII signaling cascade. Transcript profiling of CRP-treated microglial cells identified Interleukin 1 beta (IL1 beta) present in the microglial secretome as the key mediator of CRP-induced endothelial cell survival. IL1 beta neutralization by antibody-binding or siRNA-mediated silencing in microglial cells reduced the ability of the supernatant from CRP-treated microglial cells to induce endothelial cell survival. Thus our study identifies a serum based three-marker panel for GBM diagnosis and provides leads for developing targeted therapies. Biological significance A complex antibody microarray based serum marker profiling identified a three-marker panel - LYAM1, BHE40 and CRP as an accurate discriminator of glioblastoma sera from that of healthy individuals. CRP protein is seen in high levels without a concomitant increase of CRP transcripts in glioblastoma. Glioma-secreted IL6 induced hepatocytes to produce CRP in a JAK-STAT signaling dependent manner. CRP induced microglial cells to release IL1 beta which in turn promoted endothelial cell survival. This study, besides defining a serum panel for glioblastoma discrimination, identified IL1 beta as a potential candidate for developing targeted therapy. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Emerging data on cancer suggesting that target-based therapy is promising strategy in cancer treatment. PI3K-AKT pathway is extensively studied in many cancers; several inhibitors target this pathway in different levels. Recent finding on this pathway uncovered the therapeutic applications of PI3K-specific inhibitors; PI3K, AKT, and mTORC broad spectrum inhibitors. Noticeably, class I PI3K isoforms, p110 and p110 catalytic subunits have rational therapeutic application than other isoforms. Therefore, three classes of inhibitors: isoform-specific, dual-specific and broad spectrum were selected for molecular docking and dynamics. First, p110 structure was modelled; active site was analyzed. Then, molecular docking of each class of inhibitors were studied; the docked complexes were further used in 1.2ns molecular dynamics simulation to report the potency of each class of inhibitor. Remarkably, both the studies retained the similar kind of protein ligand interactions. GDC-0941, XL-147 (broad spectrum); TG100-115 (dual-specific); and AS-252424, PIK-294 (isoform-specific) were found to be potential inhibitors of p110 and p110, respectively. In addition to that pharmacokinetic properties are within recommended ranges. Finally, molecular phylogeny revealed that p110 and p110 are evolutionarily divergent; they probably need separate strategies for drug development.
Resumo:
The effects of La2O3 addition on the microstructure and wear properties of laser clad gamma/C(r)7C(3)/TiC composite coatings on gamma-TiAl intermetallic alloy substrates with NiCr-Cr3C2 precursor mixed powders have been investigated by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy-dispersive spectrometer (EDS) and block-on-ring wear tests. The responding wear mechanisms are discussed in detail. The results are compared with that for composite coating without La2O3. The comparison indicates that no evident new crystallographic phases are formed except a rapidly solidified microstructure consisting of the primary hard Cr7C3 and TiC carbides and the gamma/Cr7C3 eutectics distributed in the tough gamma nickel solid solution matrix. Good finishing coatings can be achieved under a proper amount of La2O3-addition and a suitable laser processing parameters. The additions of rare-earth oxide La,03 can refine and purify the microstructure of coatings, relatively decrease the volume fraction of primary blocky Cr7C3 to Cr7C3/gamma eutectics, reduce the dilution of clad material from base alloy and increase the microhardness of the coatings. When the addition of La2O3 is approximately 4 wt.%, the laser clad composite coating possesses the highest hardness and toughness. The composite coating with 4 wt.%La2O3 addition can result the best enhancement of wear resistance of about 30%. However, too less or excessive addition amount of La2O3 have no better influence on wear resistance of the composite coating.