978 resultados para Bufo marinus - Cardiovascular system


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exercise is making a resurgence in many countries, given its benefits for fitness as well as prevention of obesity. This trend has spawned many supplements that purport to aid performance, muscle growth, and recovery. Initially, sports drinks were developed to provide electrolyte and carbohydrate replacement. Subsequently, energy beverages (EBs) containing stimulants and additives have appeared in most gyms and grocery stores and are being used increasingly by "weekend warriors" and those seeking an edge in an endurance event. Long-term exposure to the various components of EBs may result in significant alterations in the cardiovascular system, and the safety of EBs has not been fully established. For this review, we searched the MEDLINE and EMBASE databases from 1976 through May 2010, using the following keywords: energy beverage, energy drink, power drink, exercise, caffeine, red bull, bitter orange, glucose, ginseng, guarana, and taurine. Evidence regarding the effects of EBs is summarized, and practical recommendations are made to help in answering the patient who asks, "Is it safe for me to drink an energy beverage when I exercise?"

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Post-mortem MR (PMMR) imaging is a powerful diagnostic tool with a wide scope in forensic radiology. In the past 20 years, PMMR has been used as both an adjunct and an alternative to autopsy. The role of PMMR in forensic death investigations largely depends on the rules and habits of local jurisdictions, availability of experts, financial resources, and individual case circumstances. PMMR images are affected by post-mortem changes, including position-dependent sedimentation, variable body temperature and decomposition. Investigators must be familiar with the appearance of normal findings on PMMR to distinguish them from disease or injury. Coronal whole-body images provide a comprehensive overview. Notably, short tau inversion–recovery (STIR) images enable investigators to screen for pathological fluid accumulation, to which we refer as “forensic sentinel sign”. If scan time is short, subsequent PMMR imaging may be focussed on regions with a positive forensic sentinel sign. PMMR offers excellent anatomical detail and is especially useful to visualize pathologies of the brain, heart, subcutaneous fat tissue and abdominal organs. PMMR may also be used to document skeletal injury. Cardiovascular imaging is a core area of PMMR imaging and growing evidence indicates that PMMR is able to detect ischaemic injury at an earlier stage than traditional autopsy and routine histology. The aim of this review is to present an overview of normal findings on forensic PMMR, provide general advice on the application of PMMR and summarise the current literature on PMMR imaging of the head and neck, cardiovascular system, abdomen and musculoskeletal system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION 17β-estradiol (E2) has been found to induce vasodilation in the cardiovascular system and at physiological levels, resulting in prevention of cerebral vasospasm following subarachnoid hemorrhage (SAH) in animal models. The goal of this study was to analyze the cellular mechanism of nitric oxide (NO) production and its relation to E2, in vitro in brain and peripheral endothelial cells. METHODS Human umbilical endothelial cells (HUVEC) and brain endothelial cells (bEnd.3) were treated with estradiol (E2, 0.1, 10, 100, and 1,000 nM), and supernatant was collected at 0, 5, 15, 30, 60, and 120 min for nitric oxide metabolome (nitrite, NO₂) measurements. Cells were also treated with E2 in the presence of 1400W, a potent eNOS inhibitor, and ICI, an antagonist of estradiol receptors (ERs). Effects of E2 on eNOS protein expression were assessed with Western blot analysis. RESULTS E2 significantly increased NO2 levels irrespective of its concentration in both cell lines by 35 % and 42 % (p < 0.05). The addition of an E2 antagonist, ICI (10 μM), prevented the E2-induced increases in NO2 levels (11 % p > 0.05). The combination of E2 (10 nM) and a NOS inhibitor (1400W, 5 μM) inhibited NO2 increases in addition (4 %, p > 0.05). E2 induced increases in eNOS protein levels and phosphorylated eNOS (eNOS(p)). CONCLUSIONS This study indicates that E2 induces NO level increases in cerebral and peripheral endothelial cells in vitro via eNOS activation and through E2 receptor-mediated mechanisms. Further in vivo studies are warranted to evaluate the therapeutic value of estrogen for the treatment of SAH-induced vasospasm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Close similarities of various physiological parameters makes the pig one of the preferred animal models for the study of human diseases, especially those involving the cardiovascular system. Unfortunately, the use of pig models to study diseases such as viral hemorrhagic fevers and endotoxic shock syndrome have been hampered by the lack of the necessary immunological tools to measure important immunoregulatory cytokines such as tumor necrosis factor (TNF). Here we describe a TNF-bioassay which is based on the porcine kidney cell line PK(15). Compared to the widely used murine fibroblastoid cell line L929, the PK(15) cell line displays a 100-1000-fold higher sensitivity for porcine TNF-alpha, a higher sensitivity for human TNF-alpha, and a slightly lower sensitivity for murine TNF-alpha. Using a PK(15) bioassay we can detect recombinant TNF-alpha as well as cytotoxic activity in the supernatants of lipopolysaccharide (LPS)-activated porcine monocytes at high dilutions. This suggests that the sensitivity of the test should permit the detection of TNF in biological specimens such as pig serum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exposure to outdoor air pollutants and passive tobacco smoke are common but avoidable worldwide risk factors for morbidity and mortality of individuals. In addition to well-known effects of pollutants on the cardiovascular system and the development of cancer, in recent years the association between air pollution and respiratory morbidity has become increasingly apparent. Not only in adults, but also in children with asthma and in healthy children a clear harmful effect of exposure towards air pollutants has been demonstrated in many studies. Among others increased pollution has been shown to result in more frequent and more severe respiratory symptoms, more frequent exacerbations, higher need for asthma medication, poorer lung function and increased visits to the emergency department and more frequent hospitalisations. While these associations are well established, the available data on the role of air pollution in the development of asthma seems less clear. Some studies have shown that increased exposure towards tobacco smoke and air pollution leads to an increase in asthma incidence and prevalence; others were not able to confirm those findings. Possible reasons for this discrepancy are different definitions of the outcome asthma, different methods for exposure estimation and differences in the populations studied with differing underlying genetic backgrounds. Regardless of this inconsistency, several mechanisms have already been identified linking air pollution with asthma development. Among these are impaired lung growth and development, immunological changes, genetic or epigenetic effects or increased predisposition for allergic sensitisation. What the exact interactions are and which asthmatic phenotypes will be influenced most by pollutants will be shown by future studies. This knowledge will then be helpful in exploring possible preventive measures for the individual and to help policy makers in deciding upon most appropriate regulations on a population level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

UNLABELLED Altered arterial stiffness is a recognized risk factor of poor cardiovascular health. Chronic inflammation may increase arterial stiffness. We tested whether arterial stiffness is increased children with asthma, a chronic disease characterized by fluctuating airway and systemic inflammation. Arterial stiffness, expressed as carotid-femoral pulse wave velocity (PWVcf), was measured in 37 mild-to-moderate asthmatic children: 11 girls, median (range) age 11.1 years (6-15). PWVcf in asthma was compared to PWVcf in 65 healthy controls matched for age, height, and gender previously studied in Germany and was correlated with airway inflammation and obstruction. PWVcf was higher in asthmatic children compared to controls: PWVcf median (interquartile range) was 4.7 m/s (4.5-4.9) vs. 4.3 m/s (4.1-4.7), p < 0.0001. In asthmatic children, PWVcf was inversely associated (r (2) = 0.20, p = 0.004) with forced expiratory volume in 1 s (FEV1). This association remained significant after adjusting for possible confounders including body mass index, blood pressure, steroid use, and FeNO. CONCLUSION Arterial stiffness is increased in children with mild-to-moderate asthma. The association between impaired lung function and increased arterial stiffness suggests that severity of disease translates into detrimental effects on the cardiovascular system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many end-stage heart failure patients are not eligible to undergo heart transplantation due to organ shortage, and even those under consideration for transplantation might suffer long waiting periods. A better understanding of the hemodynamic impact of left ventricular assist devices (LVAD) on the cardiovascular system is therefore of great interest. Computational fluid dynamics (CFD) simulations give the opportunity to study the hemodynamics in this patient population using clinical imaging data such as computed tomographic angiography. This article reviews a recent study series involving patients with pulsatile and constant-flow LVAD devices in which CFD simulations were used to qualitatively and quantitatively assess blood flow dynamics in the thoracic aorta, demonstrating its potential to enhance the information available from medical imaging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Three Gorges Reservoir (TGR), created in consequence of the Yangtze River's impoundment by the Three Gorges Dam, faces numerous anthropogenic impacts that challenge its unique ecosystem. Organic pollutants, particularly aryl hydrocarbon receptor (AhR) agonists, have been widely detected in the Yangtze River, but only little research was yet done on AhR-mediated activities. Hence, in order to assess effects of organic pollution, with particular focus on AhR-mediated activities, several sites in the TGR area were examined applying the "triad approach". It combines chemical analysis, in vitro, in vivo and in situ investigations to a holistic assessment. Sediments and the benthic fish species Pelteobagrus vachellii were sampled in 2011/2012, respectively, to identify relevant endpoints. Sediment was tested in vitro with the ethoxyresorufin-O-deethylase (EROD) induction assay, and in vivo with the Fish Embryo Toxicity Test and Sediment Contact Assay with Danio rerio. Activities of phase I (EROD) and phase II (glutathione-S-transferase) biotransformation enzymes, pollutant metabolites and histopathological alterations were studied in situ in P. vachellii. EROD induction was tested in vitro and in situ to evaluate possible relationships. Two sites, near Chongqing and Kaixian city, were identified as regional hot-spots and further investigated in 2013. The sediments induced in the in vitro/in vivo bioassays AhR-mediated activities and embryotoxic/teratogenic effects - particularly on the cardiovascular system. These endpoints could be significantly correlated to each other and respective chemical data. However, particle-bound pollutants showed only low bioavailability. The in situ investigations suggested a rather poor condition of P. vachellii, with histopathological alterations in liver and excretory kidney. Fish from Chongqing city exhibited significant hepatic EROD induction and obvious parasitic infestations. The polycyclic aromatic hydrocarbon (PAH) metabolite 1-hydroxypyrene was detected in bile of fish from all sites. All endpoints in combination with the chemical data suggest a pivotal role of PAHs in the observed ecotoxicological impacts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transplantation of cryopreserved ovarian tissue has been shown to induce pregnancies and puberty successfully. Therefore, using cryopreserved ovarian tissue to postpone menopause (tissue hormone therapy [THT]) seems to be an interesting option to avoid conventional menopause hormone therapy (MHT). Pregnancy induction and replacing MHT by THT, however, are completely different topics as different requirements need to be met. First, MHT requires long-lasting and continuous hormone production. It still needs to be proven if the transplanted tissue is active for at least 5 years with a continuous follicle growth to avoid phases with low oestrogen production, which would otherwise cause menopausal symptoms and could reduce the postulated benefit for women's health. Second, the advantage of a physiological hormone production over a non-physiological MHT is still hypothetical. Third, women who have undergone hysterectomies who do not need progesterone for endometrial protection would only require oestrogens, imposing more health benefits (cardiovascular system, mammary gland) than oestrogen and progesterone production or replacement. Therefore, transplanting ovarian tissue exclusively to postpone menopause is endocrinologically doubtful and should only be carried out within clinical trials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tracing the history of individual cells during embryonic morphogenesis in a structure as complex as the cardiovascular system is one of the major challenges of developmental biology. It involves determining the relationships between the various lineages of cells forming an organ at different stages, describing the topological rearrangements tissues undergo during morphogenesis, and characterizing the interactions between cells in different structures. However, despite the great expectations raised in the field of regenerative medicine, only limited progress has been made in using regenerative therapy to repair the cardiovascular system. Recent research has highlighted the role of the epicardium during cardiac regeneration, but it is still unclear whether it is important for molecular signaling or acts as a source of progenitor cells during this process. Consequently, increasing knowledge about the origin, diversification and potential of epicardial cells during development and homeostasis and under pathological conditions is of fundamental importance both for basic research and for the development of effective cellular therapies. The aims of this article were to provide a general overview of the classical techniques used for tracing cell lineages, including their potential and limitations, and to describe novel techniques for studying the origin and differentiation of the epicardium and its role in cardiac regeneration.