895 resultados para Boron trifluoride.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Includes bibliographical references.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Date Distributed: October 13, 1960."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On cover: AEC research and development report.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Boron and chlorine were determined in rain water and in atmospheric moisture condensed in a "Saratov" refrigerator. Ocean is the main source of boron on the earth surface. Boron evaporates from the ocean and enriches atmospheric precipitation: B/Cl ratio of ocean water (0.00024) increases by factor of 10-15. Assuming that the average Cl content in global river runoff is 7.8 mg/l and boron content 0.013 mgl, B/Cl ratio in this runoff is 0.0017. The average B/Cl ratio in rain water of the Golubaya (Blue) Bay (Gelendzhik, Black Sea region) is 0.0026 and in condensates of atmospheric moisture during onshore and offshore winds in the same region it averages from 0.0029 to 0.0033. The maximum boron content in the condensates of this region during onshore winds was 0.032 mg/l and the minimum during offshore winds, 0.004 mg/l. /Cl ratio in sea water over the Atlantic Ocean and in the Gelendzhik area of the Black Sea varied within narrow range, mostly from 0.0025 to 0.0035. Similar B/Cl ratio (0.0024) was found for atmospheric precipitation on the slope of the Terskei Ala-Tau near the Issyk-Kul Lake in 1969. Thus, although chemistries of boron and chlorine (in chlorides) are very different, the B/Cl ratio in the atmosphere is fairly constant. This can be taken as a confirmation of an assumption that salt composition of sea water passes into the atmosphere in molecularly dispersed state. Supposing that the ocean-atmosphere system is in equilibrium as regards to the boron budget, it can be assumed that the same amount of boron passes from the ocean into bottom sediments and from lithosphere rocks and soils into the hydrosphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Foliar application may be used to supply boron (B) to a crop when B demands are higher than can be supplied via the soil. While B foliar sprays have been used to correct B deficiency in sunflower (Helianthus annuus L.) in the field, no studies have determined the amount of B taken up by sunflower plant parts via foliar application. A study was conducted in which sunflower plants were grown at constant B concentration in nutrient solution with adequate B (46 mum) or with limited B supply (0.24, 0.40 and 1.72 mum) using Amberlite IRA-743 resin to control B supply. At the late vegetative stage of growth (25 and 35 d after transplanting), two foliar sprays were applied of soluble sodium tetraborate (20.8 % B) each at 0, 28, 65, 120 and 1200 mm (each spray equivalent to 0, 0.03, 0.07, 0.13 and 1.3 kg B ha(-1) in 100 L water ha(-1)). The highest rate of B foliar fertilization resulted in leaf burn but had no other evident detrimental effect on plant growth. Under B-deficient conditions, B foliar application increased the vegetative and reproductive dry mass of plants. Foliar application of 28-1200 mm B increased the total dry mass of the most B-deficient plants by more than three-fold and that of plants grown initially with 1.72 mum B in solution by 37-49 %. In this latter treatment, the dry mass of the capitulum was similar to that achieved under control conditions, but in no instance was total plant dry mass similar to that of the control. All B foliar spray rates increased the B concentration in various parts of the plant tops, including those that developed after the sprays were applied, but the B concentration in the roots was not increased by B foliar application. The B concentration in the capitulum of the plants sprayed at the highest rate was between 37 and 93 % of that in the control plants. This study showed that B foliar application was of benefit to B-deficient sunflower plants, increasing the B status of plant tops, including that of the capitulum which developed after the B sprays were applied. (C) 2003 Annals of Botany Company.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of boron and strontium interactions on the eutectic silicon in hypoeutectic Al-Si alloys have been studied. Samples were prepared from an AI-I 0 mass%Si base alloy with different Al-B additions, alone and in combination with strontium. In alloys containing no strontium, boron additions do not cause modification of the eutectic silicon, while in strontium containing alloys, boron additions reduce the level of modification of the eutectic silicon. Thermal analysis parameters and eutectic silicon microstructures were investigated with respect to the Sr to B ratio. In order to modify the eutectic silicon, a Sr/B ratio exceeding 0.4 is required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of boron on the eutectic modification and solidification mode of hypoeutectic Al-Si alloys have been studied adding different boride phases. The results show that boron does not cause modification of the eutectic silicon. Boron-containing samples display eutectic nucleation and growth characteristics similar to that of unmodified alloys. (C) 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Boron solubility in the as-cast and solution treated martensite of Fe-Cr-B cast irons, containing approximately 1.35 wt.% of boron, 12 wt.% of chromium, as well as other alloying elements, has been investigated using conventional microanalysis. The significant microstructural variations after tempering at 750 degreesC for 0.5-4 h, compared with the original as-cast and solution treated microstructures, indicated that the matrix consisted of boron and carbon supersaturated solid solutions. The boron solubility detected by electron microprobe was between 0.185-0.515 wt.% for the as-cast martensite and 0.015-0.0589 wt.% for the solution treated martensite, much higher than the accepted value of 0.005 wt.% in pure iron. These remarkable increases are thought to be associated with some metallic alloying element addition, such as chromium, vanadium and molybdenum, which have atomic diameters larger than iron, and expand the iron lattice to sufficiently allow boron atoms to occupy the interstitial sites in iron lattice. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the sintering of an 18Ni(350) maraging steel with additions of boron, with the aim of producing high hardness rapid tooling. Reaction of the boron with the alloying elements in the maraging steel resulted in the formation of a Mo- and Ti-rich borides. The former melted at similar to1220degreesC, providing a liquid phase for enhanced sintering. Although densification could occur regardless of the boron content, especially at high temperature, 0.4% B was required to produce a near full density component. The formation of the various borides depleted the matrix of critical age hardening elements. However, by altering the starting powder composition to compensate for this, hardness close to the wrought alloy has been achieved. This hardness was comparable to a common die casting tool steel. Examples of dies produced using selective laser sintering (SLS) are also shown. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Field observations and glasshouse studies have suggested links between boron (B)-deficiency and leaf damage induced by low temperature in crop plants, but causal relationships between these two stresses at physiological, biochemical and molecular levels have yet to be explored. Limited evidence at the whole-plant level suggests that chilling temperature in the root zone restricts B uptake capacity and/or B distribution/utilization efficiency in the shoot, but the nature of this interaction depends on chilling tolerance of species concerned, the mode of low temperature treatment (abrupt versus gradual temperature decline) and growth conditions (e.g. photon flux density and relative humidity) that may exacerbate chilling stress. Scope This review explores roles of B nutrition in chilling tolerance of continual root or transient shoot chills in crop species adapted to warm season conditions. It reviews current research on combined effects of chilling temperature (ranging from > 0 to 20 degrees C) and B deficiency on growth and B nutrition responses in crop species differing in chilling tolerance. Conclusion For subtropical/tropical species (e.g. cucumber, cassava, sunflower), root chilling at 10-17 degrees C decreases B uptake efficiency and B utilization in the shoot and increases the shoot : root ratio, but chilling-tolerant temperate species (e.g. oilseed rape, wheat) require much lower root chill temperatures (2-5 degrees C) to achieve the same responses. Boron deficiency exacerbates chilling injuries in leaf tissues, particularly under high photon flux density. Suggested mechanisms for B x chilling interactions in plants are: (a) chilling-induced reduction in plasmalemma hydraulic conductivity, membrane fluidity, water channel activity and root pressure, which contribute to the decrease in root hydraulic conductance, water uptake and associated B uptake; (b) chilling-induced stomatal dysfunction affecting B transport from root to shoot and B partitioning in the shoot; and (c) B deficiency induced sensitivity to photo-oxidative damage in leaf cells. However, specific evidence for each of the mechanisms is still lacking. Impacts of B status on chilling tolerance in crop species have important implications for the management of B supply during sensitive stages of growth, such as early growth after planting and early reproductive development, both of which can coincide with the occurrence of chilling temperatures in the field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oilseed rape (Brassica napus) is sensitive to low boron (B) supply, and its growth response to B may be influenced by soil temperature. To test the relationship between B and temperature, oilseed rape (cv. Hyola 42) seedlings were grown at 10 degrees C (low) root zone temperature (RZT) with B supply from deficient to adequate B levels until growth of low B plants just began to slow down. Half of the pots were then transferred to 20 degrees C (warm) RZT for 11 days before they were moved back to 10 degrees C RZT for the final 4 days. Both plant dry mass and B uptake increased after plants were exposed to warm RZT. However, plant B deficiency was exacerbated by warm RZT in low B plants because of increased relative growth rate and shoot-root ratio without a commensurate increase in B uptake rate. It is concluded that RZT above the critical threshold for chilling injury in oilseed rape can nevertheless affect the incidence of B deficiency by altering shoot-root ratio and hence the balance between shoot B demand and B uptake.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Boron substitution in carbon materials has been comprehensively investigated using the density functional theory method. It was found that there is a correlation between the stability of the graphene sheet, the distribution of T electrons, the electrostatic potential, and the capability for hydrogen-atom adsorption. Boron substitution destabilizes the graphene structure, increases the density of the electron wave around the substitutional boron atoms, and lowers the electrostatic potential, thus improving the hydrogen adsorption energy on carbon. However, this improvement is only ca. 10-20% instead of a factor of 4 or 5. Our calculations also show that two substitutional boron atoms provide consistent and reliable results, but one substitutional boron results in contradictory conclusions. This is a warning to other computational chemists who work on boron substitution that the conclusion from one substitutional boron might not be reliable.

Relevância:

20.00% 20.00%

Publicador: