695 resultados para Bomi Kang
Resumo:
We report the results of a multimessenger search for coincident signals from the LIGO and Virgo gravitational-wave observatories and the partially completed IceCube high-energy neutrino detector, including periods of joint operation between 2007-2010. These include parts of the 2005-2007 run and the 2009-2010 run for LIGO-Virgo, and IceCube's observation periods with 22, 59 and 79 strings. We find no significant coincident events, and use the search results to derive upper limits on the rate of joint sources for a range of source emission parameters. For the optimistic assumption of gravitational-wave emission energy of 10(-2) M(circle dot)c(2) at similar to 150 Hz with similar to 60 ms duration, and high-energy neutrino emission of 1051 erg comparable to the isotropic gamma-ray energy of gamma-ray bursts, we limit the source rate below 1.6 x 10(-2) Mpc(-3) yr(-1). We also examine how combining information from gravitational waves and neutrinos will aid discovery in the advanced gravitational-wave detector era.
Resumo:
Gravitational waves from a variety of sources are predicted to superpose to create a stochastic background. This background is expected to contain unique information from throughout the history of the Universe that is unavailable through standard electromagnetic observations, making its study of fundamental importance to understanding the evolution of the Universe. We carry out a search for the stochastic background with the latest data from the LIGO and Virgo detectors. Consistent with predictions from most stochastic gravitational-wave background models, the data display no evidence of a stochastic gravitational-wave signal. Assuming a gravitational-wave spectrum of Omega(GW)(f) = Omega(alpha)(f/f(ref))(alpha), we place 95% confidence level upper limits on the energy density of the background in each of four frequency bands spanning 41.5-1726 Hz. In the frequency band of 41.5-169.25 Hz for a spectral index of alpha = 0, we constrain the energy density of the stochastic background to be Omega(GW)(f) < 5.6 x 10(-6). For the 600-1000 Hz band, Omega(GW)(f) < 0.14(f/900 Hz)(3), a factor of 2.5 lower than the best previously reported upper limits. We find Omega(GW)(f) < 1.8 x 10(-4) using a spectral index of zero for 170-600 Hz and Omega(GW)(f) < 1.0(f/1300 Hz)(3) for 1000-1726 Hz, bands in which no previous direct limits have been placed. The limits in these four bands are the lowest direct measurements to date on the stochastic background. We discuss the implications of these results in light of the recent claim by the BICEP2 experiment of the possible evidence for inflationary gravitational waves.
Resumo:
Diabetes interferes with bone formation and impairs fracture healing, an important complication in humans and animal models. The aim of this study was to examine the impact of diabetes on mesenchymal stem cells (MSCs) during fracture repair.Fracture of the long bones was induced in a streptozotocin-induced type 1 diabetic mouse model with or without insulin or a specific TNF alpha inhibitor, pegsunercept. MSCs were detected with cluster designation-271 (also known as p75 neurotrophin receptor) or stem cell antigen-1 (Sca-1) antibodies in areas of new endochondral bone formation in the calluses. MSC apoptosis was measured by TUNEL assay and proliferation was measured by Ki67 antibody. In vitro apoptosis and proliferation were examined in C3H10T1/2 and human-bone-marrow-derived MSCs following transfection with FOXO1 small interfering (si)RNA.Diabetes significantly increased TNF alpha levels and reduced MSC numbers in new bone area. MSC numbers were restored to normal levels with insulin or pegsunercept treatment. Inhibition of TNF alpha significantly reduced MSC loss by increasing MSC proliferation and decreasing MSC apoptosis in diabetic animals, but had no effect on MSCs in normoglycaemic animals. In vitro experiments established that TNF alpha alone was sufficient to induce apoptosis and inhibit proliferation of MSCs. Furthermore, silencing forkhead box protein O1 (FOXO1) prevented TNF alpha-induced MSC apoptosis and reduced proliferation by regulating apoptotic and cell cycle genes.Diabetes-enhanced TNF alpha significantly reduced MSC numbers in new bone areas during fracture healing. Mechanistically, diabetes-enhanced TNF alpha reduced MSC proliferation and increased MSC apoptosis. Reducing the activity of TNF alpha in vivo may help to preserve endogenous MSCs and maximise regenerative potential in diabetic patients.
Resumo:
In this paper we present the results of a coherent narrow-band search for continuous gravitational-wave signals from the Crab and Vela pulsars conducted on Virgo VSR4 data. In order to take into account a possible small mismatch between the gravitational-wave frequency and two times the star rotation frequency, inferred from measurement of the electromagnetic pulse rate, a range of 0.02 Hz around two times the star rotational frequency has been searched for both the pulsars. No evidence for a signal has been found and 95% confidence level upper limits have been computed assuming both that polarization parameters are completely unknown and that they are known with some uncertainty, as derived from x-ray observations of the pulsar wind torii. For Vela the upper limits are comparable to the spin-down limit, computed assuming that all the observed spin-down is due to the emission of gravitational waves. For Crab the upper limits are about a factor of 2 below the spin-down limit, and represent a significant improvement with respect to past analysis. This is the first time the spin-down limit is significantly overcome in a narrow-band search.
Resumo:
We present results of a search for continuously emitted gravitational radiation, directed at the brightest low-mass x-ray binary, Scorpius X-1. Our semicoherent analysis covers 10 days of LIGO S5 data ranging from 50-550 Hz, and performs an incoherent sum of coherent F-statistic power distributed amongst frequency-modulated orbital sidebands. All candidates not removed at the veto stage were found to be consistent with noise at a 1% false alarm rate. We present Bayesian 95% confidence upper limits on gravitational-wave strain amplitude using two different prior distributions: a standard one, with no a priori assumptions about the orientation of Scorpius X-1; and an angle-restricted one, using a prior derived from electromagnetic observations. Median strain upper limits of 1.3 x 10(-24) and 8 x 10(-25) are reported at 150 Hz for the standard and angle-restricted searches respectively. This proof-of-principle analysis was limited to a short observation time by unknown effects of accretion on the intrinsic spin frequency of the neutron star, but improves upon previous upper limits by factors of similar to 1.4 for the standard, and 2.3 for the angle-restricted search at the sensitive region of the detector.
Resumo:
The Advanced LIGO gravitational wave detectors are second-generation instruments designed and built for the two LIGO observatories in Hanford, WA and Livingston, LA, USA. The two instruments are identical in design, and are specialized versions of a Michelson interferometer with 4 km long arms. As in Initial LIGO, Fabry-Perot cavities are used in the arms to increase the interaction time with a gravitational wave, and power recycling is used to increase the effective laser power. Signal recycling has been added in Advanced LIGO to improve the frequency response. In the most sensitive frequency region around 100 Hz, the design strain sensitivity is a factor of 10 better than Initial LIGO. In addition, the low frequency end of the sensitivity band is moved from 40 Hz down to 10 Hz. All interferometer components have been replaced with improved technologies to achieve this sensitivity gain. Much better seismic isolation and test mass suspensions are responsible for the gains at lower frequencies. Higher laser power, larger test masses and improved mirror coatings lead to the improved sensitivity at mid and high frequencies. Data collecting runs with these new instruments are planned to begin in mid-2015.
Resumo:
Background Helichrysum species are used extensively for stress-related ailments and as dressings for wounds normally encountered in circumcision rites, bruises, cuts and sores. It has been reported that Helichysum species are used to relief abdominal pain, heart burn, cough, cold, wounds, female sterility, menstrual pain. Results From the extracts of Helichrysum foetidum (L.) Moench, six known compounds were isolated and identified. They were 7, 4′-dihydroxy-5-methoxy-flavanone (1), 6′-methoxy-2′,4, 4′-trihydroxychalcone (2), 6′-methoxy-2′,4-dihydroxychalcone -4′-O-β-D-glucoside (3), apigenin (4), apigenin-7-O-β-D-glucoside (5), kaur-16-en-18-oic acid (6) while two known compounds 3,5,7-trihydroxy-8-methoxyflavone (12), 4,5-dicaffeoyl quinic acid (13) together with a mixture of phytosterol were isolated from the methanol extract of Helichrysum mechowianum Klatt. All the compounds were characterized by spectroscopic and mass spectrometric methods, and by comparison with literature data. Both extracts and all the isolates were screened for the protease inhibition, antibacterial and antifungal activities. In addition, the phytochemical profiles of both species were investigated by ESI-MS experiments. Conclusions These results showed that the protease inhibition assay of H. foetidum could be mainly attributed to the constituents of flavonoids glycosides (3, 5) while the compound (13) from H. mechowianum contributes to the stomach protecting effects. In addition, among the antibacterial and antifungal activities of all the isolates, compound (6) was found to possess a potent inhibitor effect against the tested microorganisms. The heterogeneity of the genus is also reflected in its phytochemical diversity. The differential bioactivities and determined constituents support the traditional use of the species. Molecular modelling was carried out by computing selected descriptors related to drug absorption, distribution, metabolism, excretion and toxicity (ADMET).
Resumo:
The ALICE Collaboration has measured inclusive J/psi production in pp collisions at a center-of-mass energy root s = 2.76 TeV at the LHC. The results presented in this Letter refer to the rapidity ranges vertical bar y vertical bar < 0.9 and 2.5 < y <4 and have been obtained by measuring the electron and muon pair decay channels, respectively. The integrated luminosities for the two channels are L-int(e) = 1.1 nb(-1) and L-int(mu) = 19.9 nb(-1), and the corresponding signal statistics are N-J/psi(e+e-) = 59 +/- 14 and N-J/psi(mu+mu-) = 1364 +/- 53. We present d sigma(J/psi)/dy for the two rapidity regions under study and, for the forward-y range, d(2)sigma(J/psi)/dydp(t) in the transverse momentum domain 0 < p(t) < 8 GeV/c. The results are compared with previously published results at root s = 7 TeV and with theoretical calculations. (C) 2012 CERN. Published by Elsevier B.V. All rights reserved.
Resumo:
The KASCADE-Grande experiment, located at Karlsruhe Institute of Technology (Germany) is a multi-component extensive air-shower experiment devoted to the study of cosmic rays and their interactions at primary energies 10(14)-10(18) eV. Main goals of the experiment are the measurement of the all-particle energy spectrum and mass composition in the 10(16)-10(18) eV range by sampling charged (N-ch) and muon (N-mu) components of the air shower. The method to derive the energy spectrum and its uncertainties, as well as the implications of the obtained result, is discussed. An overview of the analyses performed by KASCADE-Grande to derive the mass composition of the measured high-energy comic rays is presented as well. (C) 2012 Elsevier By. All rights reserved.
Resumo:
Vector mesons may be photoproduced in relativistic heavy-ion collisions when a virtual photon emitted by one nucleus scatters from the other nucleus, emerging as a vector meson. The STAR Collaboration has previously presented measurements of coherent rho(0) photoproduction at center of mass energies of 130 GeV and 200 GeV in AuAu collisions. Here, we present a measurement of the cross section at 62.4 GeV; we find that the cross section for coherent rho(0) photoproduction with nuclear breakup is 10.5 +/- 1.5 +/- 1.6mb at 62.4 GeV. The cross-section ratio between 200 GeV and 62.4 GeV is 4.4 +/- 0.6, less than is predicted by most theoretical models. It is, however, proportionally much larger than the previously observed 15% +/- 55% increase between 130 GeV and 200 GeV.
Resumo:
Two-particle azimuthal (Delta phi) and pseudorapidity (Delta eta) correlations using a trigger particle with large transverse momentum (p(T)) in d+Au, Cu+Cu, and Au+Au collisions at root s(NN) = 62.4 GeV and 200 GeV from the STAR experiment at the Relativistic Heavy Ion Collider are presented. The near-side correlation is separated into a jet-like component, narrow in both Delta phi and Delta eta, and the ridge, narrow in Delta phi but broad in Delta eta. Both components are studied as a function of collision centrality, and the jet-like correlation is studied as a function of the trigger and associated p(T). The behavior of the jet-like component is remarkably consistent for different collision systems, suggesting it is produced by fragmentation. The width of the jet-like correlation is found to increase with the system size. The ridge, previously observed in Au+Au collisions at root s(NN) = 200 GeV, is also found in Cu+Cu collisions and in collisions at root s(NN) = 62.4 GeV, but is found to be substantially smaller at root s(NN) = 62.4 GeV than at root s(NN) = 200 GeV for the same average number of participants (< N-part >). Measurements of the ridge are compared to models.
Resumo:
OBJECTIVE: The purpose of this study was to establish longitudinal reference ranges for fetal ultrasound biometry measurements and growth parameters in twin pregnancies. METHOD: A total of 200 uncomplicated twin pregnancies before 21 weeks of gestation were recruited for this prospective, longitudinal study. Women who abandoned follow-up, pregnancies with unknown outcomes or pregnancies with complications were excluded. Ultrasound scans were performed every three weeks, and biparietal and occipitofrontal diameters, head and abdominal circumferences, and femur diaphysis length measurements were obtained for each fetus at each visit. Estimated fetal weight, biparietal/occipitofrontal diameter, head circumference/abdominal circumference, and femur diaphysis length/abdominal circumference ratios were also calculated. Multilevel regression analysis was performed on normalized data. RESULTS: A total of 807 ultrasound examinations were performed in 125 twin pregnancies between 14 and 38 weeks of gestation (6.5 +/- 1.4 scans/pregnancy). Regression analysis demonstrated significant correlations for all variables with gestational age, namely log of the biparietal diameter (r = 0.98), log of the occipitofrontal diameter (r = 0.98), log of the head circumference (r = 0.99), log of the abdominal circumference (r = 0.98), square root of the femur length (r = 0.99), log of the estimated fetal weight (r = 0.99), biparietal/occipitofrontal ratio (r = -0.11), head/abdomen circumference ratio (r = -0.56), and log of the femur length/abdominal circumference ratio (r = 0.61). Values corresponding to the 10th, 50th, and 90th percentiles for estimated fetal weight at 28, 32, and 36 weeks, respectively, were as follows: 937, 1,096, 1,284 g; 1,462, 1,720, 2,025 g; and 2,020, 2,399, 2,849 g. CONCLUSION: In twin pregnancies, fetal ultrasound biometry measurements and growth parameters show a significant correlation with gestational age.
Resumo:
The ALICE Collaboration has studied J/psi production in pp collisions at root s = 7 TeV at the LHC through its muon pair decay. The polar and azimuthal angle distributions of the decay muons were measured, and results on the J/psi polarization parameters lambda(theta) and lambda(phi) were obtained. The study was performed in the kinematic region 2: 5 < y < 4, 2 < p(t) < 8 GeV/c, in the helicity and Collins-Soper reference frames. In both frames, the polarization parameters are compatible with zero, within uncertainties.
Resumo:
This paper reports results for directed flow v(1) and elliptic flow v(2) of charged particles in Cu + Cu collisions at root s(NN) = 22.4 GeV at the Relativistic Heavy Ion Collider. The measurements are for the 0-60% most central collisions, using charged particles observed in the STAR detector. Our measurements extend to 22.4-GeV Cu + Cu collisions the prior observation that v1 is independent of the system size at 62.4 and 200 GeV and also extend the scaling of v(1) with eta/y(beam) to this system. The measured v(2)(p(T)) in Cu + Cu collisions is similar for root s(NN) throughout the range 22.4 to 200 GeV. We also report a comparison with results from transport model (ultrarelativistic quantum molecular dynamics and multiphase transport model) calculations. The model results do not agree quantitatively with the measured v(1)(eta), v(2)(p(T)), and v(2)(eta).
Resumo:
We report transverse momentum (p(T) <= 15 GeV/c) spectra of pi(+/-), K-+/-, p, (p) over bar, K-0(S), and rho(0) at midrapidity in p + p and Au + Au collisions at root s(NN) = 200 GeV. Perturbative QCD calculations are consistent with pi(+/-) spectra in p + p collisions but do not reproduce K and p((p) over bar) spectra. The observed decreasing antiparticle-to-particle ratios with increasing p(T) provide experimental evidence for varying quark and gluon jet contributions to high-p(T) hadron yields. The relative hadron abundances in Au + Au at p(T) >= 8 GeV/c are measured to be similar to the p + p results, despite the expected Casimir effect for parton energy loss.