1000 resultados para Black Sea


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Here we present stable isotope data for vertical profiles of dissolved molybdenum of the modern euxinic water columns of the Black Sea and two deeps of the Baltic Sea. Dissolved molybdenum in all water samples is depleted in salinity-normalized concentration and enriched in the heavy isotope (δ98Mo values up to + 2.9‰) compared to previously published isotope data of sedimentary molybdenum from the same range of water depths. Furthermore, δ98Mo values of all water samples from the Black Sea and anoxic deeps of the Baltic Sea are heavier than open ocean water. The observed isotope fractionation between sediments and the anoxic water column of the Black Sea are in line with the model of thiomolybdates that scavenge to particles under reducing conditions. An extrapolation to a theoretical pure MoS42− solution indicates a fractionation constant between MoS42− and authigenic solid Mo of 0.5 ± 0.3‰. Measured waters with all thiomolybdates coexisting in various proportions show larger but non-linear fractionation. The best explanation for our field observations is Mo scavenging by the thiomolybdates, dominantly — but not exclusively — present in the form of MoS42−. The Mo isotopic compositions of samples from the sediments and anoxic water column of the Baltic Sea are in overall agreement with those of the Black Sea at intermediate depth and corresponding sulphide concentrations. The more dynamic changes of redox conditions in the Baltic deeps complicate the Black Sea-derived relationship between thiomolybdates and Mo isotopic composition. In particular, the occasional flushing/mixing, of the deep waters, affects the corresponding water column and sedimentary data. δ98Mo values of the upper oxic waters of both basins are higher than predicted by mixing models based on salinity variations. The results can be explained by non-conservative behaviour of Mo under suboxic to anoxic conditions in the shallow bottom parts of the basin, most pronounced on the NW shelf of the Black Sea.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Copper porphyrins have been isolated from deep-sea sediments collected during six legs of the Deep Sea Drilling Project-International Program of Ocean Drilling. These pigments are present in depositional areas receiving high inputs of terrestrially derived oxidized organic matter. Such areas include the Black Sea, the Bay of Biscay, the Blake-Bahama Basin, and slumped Miocene deposits off Cape Bojador on the west coast of Africa.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mesozooplankton is collected by vertical tows within the Black sea water body mass layer in the NE Aegean, using a WP-2 200 µm net equipped with a large non-filtering cod-end (10 l). Macrozooplankton organisms are removed using a 2000 µm net. A few unsorted animals (approximately 100) are placed inside several glass beaker of 250 ml filled with GF/F or 0.2 µm Nucleopore filtered seawater and with a 100 µm net placed 1 cm above the beaker bottom. Beakers are then placed in an incubator at natural light and maintaining the in situ temperature. After 1 hour pellets are separated from animals and placed in separated flasks and preserved with formalin. Pellets are counted and measured using an inverted microscope. Animals are scanned and counted using an image analysis system. Carbon- Specific faecal pellet production is calculated from a) faecal pellet production, b) individual carbon: Animals are scanned and their body area is measured using an image analysis system. Body volume is then calculated as an ellipsoid using the major and minor axis of an ellipse of same area as the body. Individual carbon is calculated from a carbon- total body volume of organisms (relationship obtained for the Mediterranean Sea by Alcaraz et al. (2003) divided by the total number of individuals scanned and c) faecal pellet carbon: Faecal pellet length and width is measured using an inverted microscope. Faecal pellet volume is calculated from length and width assuming cylindrical shape. Conversion of faecal pellet volume to carbon is done using values obtained in the Mediterranean from: a) faecal pellet density 1,29 g cm**3 (or pg µm**3) from Komar et al. (1981); b) faecal pellet DW/WW=0,23 from Elder and Fowler (1977) and c) faecal pellet C%DW=25,5 Marty et al. (1994).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The ingestion on ciliates and phytoplankton dataset is based on samples taken during October 2008 in Northern Aegean Sea, the area influenced by the Black Sea water outflow. A Lagrangian experiment was established and copepod ingestion was estimated from experiments performed at stations according to the different positions of drifters during the cruise. Copepods for the experiments were obtained with slow non-quantitative tows from the upper 20 m layer of the water column using 200 µm mesh size nets fitted with a large non-filtering cod end. For the grazing experiments we used the following copepod species: Clausocalanus furcatus, and Temoraa stylifera according to the relevant reference (Bamstedt et al. 2000). Copepod clearance rates on ciliates were calculated according to Frost equations (Frost 1972). Ingestion rates were calculated by multiplying clearance rates by the initial standing stocks (Bamstedt et al. 2000). The egg production dataset is based on samples taken during October 2008 in Northern Aegean Sea, the area influenced by the Black Sea water outflow. A Lagrangian experiment was established and copepod egg production was estimated from experiments performed at stations according to the different positions of drifters during the cruise. Egg production rates of the dominant calanoid copepods were determined by incubation of fertilised females (eggs female/day) collected in the 0-20m layer. Copepod egg production was measured for the copepods Clausocalanus furcatus, Temora stylifera. On board experiments for the estimation of copepod egg production were taken place. For the estimation of copepod production (mgC/m**2/day), lengths (copepods and eggs) were converted to body carbon (Hopcroft et al., 1998) and production was estimated from biomass and weight-specific egg production rates, by assuming that those rates are representative for juvenile specific growth rates (Berggreen et al., 1988).

Relevância:

70.00% 70.00%

Publicador:

Relevância:

70.00% 70.00%

Publicador:

Relevância:

70.00% 70.00%

Publicador: