983 resultados para Biometric identification
Resumo:
Change in temperature is often a major environmental factor in triggering waterborne disease outbreaks. Previous research has revealed temporal and spatial patterns of bacterial population in several aquatic ecosystems. To date, very little information is available on aquaculture environment. Here, we assessed environmental temperature effects on bacterial community composition in freshwater aquaculture system farming of Litopenaeus vannamei (FASFL). Water samples were collected over a one-year period, and aquatic bacteria were characterized by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and 16S rDNA pyrosequencing. Resulting DGGE fingerprints revealed a specific and dynamic bacterial population structure with considerable variation over the seasonal change, suggesting that environmental temperature was a key driver of bacterial population in the FASFL. Pyrosequencing data further demonstrated substantial difference in bacterial community composition between the water at higher (WHT) and at lower (WLT) temperatures in the FASFL. Actinobacteria, Proteobacteria and Bacteroidetes were the highest abundant phyla in the FASFL, however, a large number of unclassified bacteria contributed the most to the observed variation in phylogenetic diversity. The WHT harbored remarkably higher diversity and richness in bacterial composition at genus and species levels when compared to the WLT. Some potential pathogenenic species were identified in both WHT and WLT, providing data in support of aquatic animal health management in the aquaculture industry.
Resumo:
PURPOSE To estimate refractive indices used by the Lenstar biometer to translate measured optical path lengths into geometrical path lengths within the eye. METHODS Axial lengths of model eyes were determined using the IOLMaster and Lenstar biometers; comparing those lengths gave an overall eye refractive index estimate for the Lenstar. Using the Lenstar Graphical User Interface, we noticed that boundaries between media could be manipulated and opposite changes in optical path lengths on either side of the boundary could be introduced. Those ratios were combined with the overall eye refractive index to estimate separate refractive indices. Furthermore, Haag-Streit provided us with a template to obtain 'air thicknesses' to compare with geometrical distances. RESULTS The axial length estimates obtained using the IOLMaster and the Lenstar agreed to within 0.01 mm. Estimates of group refractive indices used in the Lenstar were 1.340, 1.341, 1.415, and 1.354 for cornea, aqueous, lens, and overall eye, respectively. Those refractive indices did not match those of schematic eyes, but were close in the cases of aqueous and lens. Linear equations relating air thicknesses to geometrical thicknesses were consistent with our findings. CONCLUSION The Lenstar uses different refractive indices for different ocular media. Some of the refractive indices, such as that for the cornea, are not physiological; therefore, it is likely that the calibrations in the instrument correspond to instrument-specific corrections and are not the real optical path lengths.
Resumo:
The koala (Phascolarctos cinereus) is an Australian marsupial that continues to experience significant population declines. Infectious diseases caused by pathogens such as Chlamydia are proposed to have a major role. Very few species-specific immunological reagents are available, severely hindering our ability to respond to the threat of infectious diseases in the koala. In this study, we utilise data from the sequencing of the koala transcriptome to identify key immunological markers of the koala adaptive immune response and cytokines known to be important in the host response to chlamydial infection in other species. This report describes the identification and preliminary sequence analysis of (1) T lymphocyte glycoprotein markers (CD4, CD8); (2) IL-4, a marker for the Th2 response; (3) cytokines such as IL-6, IL-12 and IL-1β, that have been shown to have a role in chlamydial clearance and pathology in other hosts; and (4) the sequences for the koala immunoglobulins, IgA, IgG, IgE and IgM. These sequences will enable the development of a range of immunological reagents for understanding the koala’s innate and adaptive immune responses, while also providing a resource that will enable continued investigations into the origin and evolution of the marsupial immune system.
Resumo:
Species identification based on short sequences of DNA markers, that is, DNA barcoding, has emerged as an integral part of modern taxonomy. However, software for the analysis of large and multilocus barcoding data sets is scarce. The Basic Local Alignment Search Tool (BLAST) is currently the fastest tool capable of handling large databases (e.g. >5000 sequences), but its accuracy is a concern and has been criticized for its local optimization. However, current more accurate software requires sequence alignment or complex calculations, which are time-consuming when dealing with large data sets during data preprocessing or during the search stage. Therefore, it is imperative to develop a practical program for both accurate and scalable species identification for DNA barcoding. In this context, we present VIP Barcoding: a user-friendly software in graphical user interface for rapid DNA barcoding. It adopts a hybrid, two-stage algorithm. First, an alignment-free composition vector (CV) method is utilized to reduce searching space by screening a reference database. The alignment-based K2P distance nearest-neighbour method is then employed to analyse the smaller data set generated in the first stage. In comparison with other software, we demonstrate that VIP Barcoding has (i) higher accuracy than Blastn and several alignment-free methods and (ii) higher scalability than alignment-based distance methods and character-based methods. These results suggest that this platform is able to deal with both large-scale and multilocus barcoding data with accuracy and can contribute to DNA barcoding for modern taxonomy. VIP Barcoding is free and available at http://msl.sls.cuhk.edu.hk/vipbarcoding/.
Resumo:
Pattern recognition is a promising approach for the identification of structural damage using measured dynamic data. Much of the research on pattern recognition has employed artificial neural networks (ANNs) and genetic algorithms as systematic ways of matching pattern features. The selection of a damage-sensitive and noise-insensitive pattern feature is important for all structural damage identification methods. Accordingly, a neural networks-based damage detection method using frequency response function (FRF) data is presented in this paper. This method can effectively consider uncertainties of measured data from which training patterns are generated. The proposed method reduces the dimension of the initial FRF data and transforms it into new damage indices and employs an ANN method for the actual damage localization and quantification using recognized damage patterns from the algorithm. In civil engineering applications, the measurement of dynamic response under field conditions always contains noise components from environmental factors. In order to evaluate the performance of the proposed strategy with noise polluted data, noise contaminated measurements are also introduced to the proposed algorithm. ANNs with optimal architecture give minimum training and testing errors and provide precise damage detection results. In order to maximize damage detection results, the optimal architecture of ANN is identified by defining the number of hidden layers and the number of neurons per hidden layer by a trial and error method. In real testing, the number of measurement points and the measurement locations to obtain the structure response are critical for damage detection. Therefore, optimal sensor placement to improve damage identification is also investigated herein. A finite element model of a two storey framed structure is used to train the neural network. It shows accurate performance and gives low error with simulated and noise-contaminated data for single and multiple damage cases. As a result, the proposed method can be used for structural health monitoring and damage detection, particularly for cases where the measurement data is very large. Furthermore, it is suggested that an optimal ANN architecture can detect damage occurrence with good accuracy and can provide damage quantification with reasonable accuracy under varying levels of damage.
Resumo:
Background Domestic violence against women is a major public health problem and violations of women’s human rights. Health professionals could play an important role in screening for the victims. From the evidence to date, it is unclear whether health professionals do play an active role in identification of the victims. Objectives To develop a reliable and valid instrument to measure health professionals’ attitude to identifying female victims of domestic violence. Methods A primary questionnaire was constructed in accordance with established guidelines using the Theory of Planned Behaviour Ajzen (1975) to develop an instrument to measure health professionals’ attitudes in identifying female victim of DV. An expert panel was used to establish content validity. Focus groups amongst a group of health professionals (N = 5) of the target population were performed to confirm face validity. A pilot study (N = 30 nurses and doctors) was undertaken to elicit the feasibility and reliability of the questionnaire. The questionnaire was also administered a second time after one week to check the stability of the tests. Results Feedbacks of the expert panel’s and group discussion confirmed that the questionnaire had the content and face validity. Cronbach’s alpha values for all the items were greater than 0.7. Strong correlations between the direct and indirect measures confirmed that the indirect measures were well constructed. High test-retest correlations confirmed that the measures were reliable in the sense of temporal stability. Significance This tool has the potential to be used by researchers in expanding the knowledge base in this important area.
Resumo:
Ankylosing spondylitis is a common, highly heritable inflammatory arthritis affecting primarily the spine and pelvis. In addition to HLA-B*27 alleles, 12 loci have previously been identified that are associated with ankylosing spondylitis in populations of European ancestry, and 2 associated loci have been identified in Asians. In this study, we used the Illumina Immunochip microarray to perform a case-control association study involving 10,619 individuals with ankylosing spondylitis (cases) and 15,145 controls. We identified 13 new risk loci and 12 additional ankylosing spondylitis-associated haplotypes at 11 loci. Two ankylosing spondylitis-associated regions have now been identified encoding four aminopeptidases that are involved in peptide processing before major histocompatibility complex (MHC) class I presentation. Protective variants at two of these loci are associated both with reduced aminopeptidase function and with MHC class I cell surface expression.
Resumo:
MicroRNAs (miRNAs) are small non-coding RNAs of 20 nt in length that are capable of modulating gene expression post-transcriptionally. Although miRNAs have been implicated in cancer, including breast cancer, the regulation of miRNA transcription and the role of defects in this process in cancer is not well understood. In this study we have mapped the promoters of 93 breast cancer-associated miRNAs, and then looked for associations between DNA methylation of 15 of these promoters and miRNA expression in breast cancer cells. The miRNA promoters with clearest association between DNA methylation and expression included a previously described and a novel promoter of the Hsa-mir-200b cluster. The novel promoter of the Hsa-mir-200b cluster, denoted P2, is located 2 kb upstream of the 5′ stemloop and maps within a CpG island. P2 has comparable promoter activity to the previously reported promoter (P1), and is able to drive the expression of miR-200b in its endogenous genomic context. DNA methylation of both P1 and P2 was inversely associated with miR-200b expression in eight out of nine breast cancer cell lines, and in vitro methylation of both promoters repressed their activity in reporter assays. In clinical samples, P1 and P2 were differentially methylated with methylation inversely associated with miR-200b expression. P1 was hypermethylated in metastatic lymph nodes compared with matched primary breast tumours whereas P2 hypermethylation was associated with loss of either oestrogen receptor or progesterone receptor. Hypomethylation of P2 was associated with gain of HER2 and androgen receptor expression. These data suggest an association between miR-200b regulation and breast cancer subtype and a potential use of DNA methylation of miRNA promoters as a component of a suite of breast cancer biomarkers.
Resumo:
To gain further insight into the genetic architecture of psoriasis, we conducted a meta-analysis of 3 genome-wide association studies (GWAS) and 2 independent data sets genotyped on the Immunochip, including 10,588 cases and 22,806 controls. We identified 15 new susceptibility loci, increasing to 36 the number associated with psoriasis in European individuals. We also identified, using conditional analyses, five independent signals within previously known loci. The newly identified loci shared with other autoimmune diseases include candidate genes with roles in regulating T-cell function (such as RUNX3, TAGAP and STAT3). Notably, they included candidate genes whose products are involved in innate host defense, including interferon-mediated antiviral responses (DDX58), macrophage activation (ZC3H12C) and nuclear factor (NF)-κB signaling (CARD14 and CARM1). These results portend a better understanding of shared and distinctive genetic determinants of immune-mediated inflammatory disorders and emphasize the importance of the skin in innate and acquired host defense. © 2012 Nature America, Inc. All rights reserved.
Resumo:
We aimed to identify novel genetic variants affecting asthma risk, since these might provide novel insights into molecular mechanisms underlying the disease. We did a genome-wide association study (GWAS) in 2669 physician-diagnosed asthmatics and 4528 controls from Australia. Seven loci were prioritised for replication after combining our results with those from the GABRIEL consortium (n=26 475), and these were tested in an additional 25 358 independent samples from four in-silico cohorts. Quantitative multi-marker scores of genetic load were constructed on the basis of results from the GABRIEL study and tested for association with asthma in our Australian GWAS dataset. Two loci were confirmed to associate with asthma risk in the replication cohorts and reached genome-wide significance in the combined analysis of all available studies (n=57 800): rs4129267 (OR 1·09, combined p= 2·4×10-8) in the interleukin-6 receptor (IL6R) gene and rs7130588 (OR 1·09, p=1·8×10-8) on chromosome 11q13.5 near the leucine-rich repeat containing 32 gene (LRRC32, also known as GARP). The 11q13.5 locus was significantly associated with atopic status among asthmatics (OR 1·33, p=7×10-4), suggesting that it is a risk factor for allergic but not non-allergic asthma. Multi-marker association results are consistent with a highly polygenic contribution to asthma risk, including loci with weak effects that might be shared with other immune-related diseases, such as NDFIP1, HLA-B, LPP, and BACH2. The IL6R association further supports the hypothesis that cytokine signalling dysregulation affects asthma risk, and raises the possibility that an IL6R antagonist (tocilizumab) may be effective to treat the disease, perhaps in a genotype-dependent manner. Results for the 11q13.5 locus suggest that it directly increases the risk of allergic sensitisation which, in turn, increases the risk of subsequent development of asthma. Larger or more functionally focused studies are needed to characterise the many loci with modest effects that remain to be identified for asthma. National Health and Medical Research Council of Australia. A full list of funding sources is provided in the webappendix. © 2011 Elsevier Ltd.
Resumo:
Simultaneous expression of highly homologous RLN1 and RLN2 genes in prostate impairs their accurate delineation. We used PacBio SMRT sequencing and RNA-Seq in LNCaP cells in order to dissect the expression of RLN1 and RLN2 variants. We identified a novel fusion transcript comprising the RLN1 and RLN2 genes and found evidence of its expression in the normal and prostate cancer tissues. The RLN1-RLN2 fusion putatively encodes RLN2 isoform with the deleted secretory signal peptide. The identification of the fusion transcript provided information to determine unique RLN1-RLN2 fusion and RLN1 regions. The RLN1-RLN2 fusion was co-expressed with RLN1 in LNCaP cells, but the two gene products were inversely regulated by androgens. We showed that RLN1 is underrepresented in common PCa cell lines in comparison to normal and PCa tissue. The current study brings a highly relevant update to the relaxin field, and will encourage further studies of RLN1 and RLN2 in PCa and broader.
Resumo:
Addition of estradiol 17-beta to first trimester human placental minces resulted in an increased synthesis of a protein of apparent molecular weight 45 kDa. The specific involvement of estrogen in the stimulation of this protein was established by demonstrating a reduction in the level of this protein by the addition of CCS 16949 A, an inhibitor of aromatase, a key enzyme in the biosynthesis of estradiol 17-beta and ICI 182,780, an estrogen receptor antagonist. The protein was purified to homogeneity and N-terminal sequencing of two of the internal peptides obtained by enzymatic digestion of the protein, as well as the absence of a free N-terminal indicated that it could be actin. This was confirmed by Western blotting using commercially available actin antiserum. The role of estradiol 17-beta in the stimulation of actin synthesis in human placenta was also established by monitoring the quantitative inhibition of DNase I by actin.
Identification of amino groups in the carbohydrate binding activity of winged bean acidic agglutinin
Resumo:
Chemical modification studies reveal that the modification of amino groups in WBA II leads to a complete loss in the hemagglutinating and saccharide binding activities. Since WBA II is a dimeric molecule and contains two binding sites, one amino group in each of the binding sites is inferred to be essential for its activity. The presence of amino group which has a potential to form hydrogen bonded interactions with the ligand, substantiates our observation regarding the forces involved in WBA II-receptor and WBA II-simple sugar interactions.
Inverse Sensitivity Analysis of Singular Solutions of FRF matrix in Structural System Identification
Resumo:
The problem of structural damage detection based on measured frequency response functions of the structure in its damaged and undamaged states is considered. A novel procedure that is based on inverse sensitivity of the singular solutions of the system FRF matrix is proposed. The treatment of possibly ill-conditioned set of equations via regularization scheme and questions on spatial incompleteness of measurements are considered. The application of the method in dealing with systems with repeated natural frequencies and (or) packets of closely spaced modes is demonstrated. The relationship between the proposed method and the methods based on inverse sensitivity of eigensolutions and frequency response functions is noted. The numerical examples on a 5-degree of freedom system, a one span free-free beam and a spatially periodic multi-span beam demonstrate the efficacy of the proposed method and its superior performance vis-a-vis methods based on inverse eigensensitivity.
Resumo:
Background: Tuberculosis still remains one of the largest killer infectious diseases, warranting the identification of newer targets and drugs. Identification and validation of appropriate targets for designing drugs are critical steps in drug discovery, which are at present major bottle-necks. A majority of drugs in current clinical use for many diseases have been designed without the knowledge of the targets, perhaps because standard methodologies to identify such targets in a high-throughput fashion do not really exist. With different kinds of 'omics' data that are now available, computational approaches can be powerful means of obtaining short-lists of possible targets for further experimental validation. Results: We report a comprehensive in silico target identification pipeline, targetTB, for Mycobacterium tuberculosis. The pipeline incorporates a network analysis of the protein-protein interactome, a flux balance analysis of the reactome, experimentally derived phenotype essentiality data, sequence analyses and a structural assessment of targetability, using novel algorithms recently developed by us. Using flux balance analysis and network analysis, proteins critical for survival of M. tuberculosis are first identified, followed by comparative genomics with the host, finally incorporating a novel structural analysis of the binding sites to assess the feasibility of a protein as a target. Further analyses include correlation with expression data and non-similarity to gut flora proteins as well as 'anti-targets' in the host, leading to the identification of 451 high-confidence targets. Through phylogenetic profiling against 228 pathogen genomes, shortlisted targets have been further explored to identify broad-spectrum antibiotic targets, while also identifying those specific to tuberculosis. Targets that address mycobacterial persistence and drug resistance mechanisms are also analysed. Conclusion: The pipeline developed provides rational schema for drug target identification that are likely to have high rates of success, which is expected to save enormous amounts of money, resources and time in the drug discovery process. A thorough comparison with previously suggested targets in the literature demonstrates the usefulness of the integrated approach used in our study, highlighting the importance of systems-level analyses in particular. The method has the potential to be used as a general strategy for target identification and validation and hence significantly impact most drug discovery programmes.