964 resultados para Biometano, Smart Grid Gas, AEEG


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we study the optimal natural gas commitment for a known demand scenario. This study implies the best location of GSUs to supply all demands and the optimal allocation from sources to gas loads, through an appropriate transportation mode, in order to minimize total system costs. Our emphasis is on the formulation and use of a suitable optimization model, reflecting real-world operations and the constraints of natural gas systems. The mathematical model is based on a Lagrangean heuristic, using the Lagrangean relaxation, an efficient approach to solve the problem. Computational results are presented for Iberian and American natural gas systems, geographically organized in 65 and 88 load nodes, respectively. The location model results, supported by the computational application GasView, show the optimal location and allocation solution, system total costs and suggest a suitable gas transportation mode, presented in both numerical and graphic supports.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To comply with natural gas demand growth patterns and Europe´s import dependency, the gas industry needs to organize an efficient upstream infrastructure. The best location of Gas Supply Units – GSUs and the alternative transportation mode – by phisical or virtual pipelines, are the key of a successful industry. In this work we study the optimal location of GSUs, as well as determining the most efficient allocation from gas loads to sources, selecting the best transportation mode, observing specific technical restrictions and minimizing system total costs. For the location of GSUs on system we use the P-median problem, for assigning gas demands nodes to source facilities we use the classical transportation problem. The developed model is an optimisation-based approach, based on a Lagrangean heuristic, using Lagrangean relaxation for P-median problems – Simple Lagrangean Heuristic. The solution of this heuristic can be improved by adding a local search procedure - the Lagrangean Reallocation Heuristic. These two heuristics, Simple Lagrangean and Lagrangean Reallocation, were tested on a realistic network - the primary Iberian natural gas network, organized with 65 nodes, connected by physical and virtual pipelines. Computational results are presented for both approaches, showing the location gas sources and allocation loads arrangement, system total costs and gas transportation mode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, Power Systems (PS) have experimented many changes in their operation. The introduction of new players managing Distributed Generation (DG) units, and the existence of new Demand Response (DR) programs make the control of the system a more complex problem and allow a more flexible management. An intelligent resource management in the context of smart grids is of huge important so that smart grids functions are assured. This paper proposes a new methodology to support system operators and/or Virtual Power Players (VPPs) to determine effective and efficient DR programs that can be put into practice. This method is based on the use of data mining techniques applied to a database which is obtained for a large set of operation scenarios. The paper includes a case study based on 27,000 scenarios considering a diversity of distributed resources in a 32 bus distribution network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increase of distributed generation (DG) has brought about new challenges in electrical networks electricity markets and in DG units operation and management. Several approaches are being developed to manage the emerging potential of DG, such as Virtual Power Players (VPPs), which aggregate DG plants; and Smart Grids, an approach that views generation and associated loads as a subsystem. This paper presents a multi-level negotiation mechanism for Smart Grids optimal operation and negotiation in the electricity markets, considering the advantages of VPPs’ management. The proposed methodology is implemented and tested in MASCEM – a multiagent electricity market simulator, developed to allow deep studies of the interactions between the players that take part in the electricity market negotiations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The future scenarios for operation of smart grids are likely to include a large diversity of players, of different types and sizes. With control and decision making being decentralized over the network, intelligence should also be decentralized so that every player is able to play in the market environment. In the new context, aggregator players, enabling medium, small, and even micro size players to act in a competitive environment, will be very relevant. Virtual Power Players (VPP) and single players must optimize their energy resource management in order to accomplish their goals. This is relatively easy to larger players, with financial means to have access to adequate decision support tools, to support decision making concerning their optimal resource schedule. However, the smaller players have difficulties in accessing this kind of tools. So, it is required that these smaller players can be offered alternative methods to support their decisions. This paper presents a methodology, based on Artificial Neural Networks (ANN), intended to support smaller players’ resource scheduling. The used methodology uses a training set that is built using the energy resource scheduling solutions obtained with a reference optimization methodology, a mixed-integer non-linear programming (MINLP) in this case. The trained network is able to achieve good schedule results requiring modest computational means.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Smart grids are envisaged as infrastructures able to accommodate all centralized and distributed energy resources (DER), including intensive use of renewable and distributed generation (DG), storage, demand response (DR), and also electric vehicles (EV), from which plug-in vehicles, i.e. gridable vehicles, are especially relevant. Moreover, smart grids must accommodate a large number of diverse types or players in the context of a competitive business environment. Smart grids should also provide the required means to efficiently manage all these resources what is especially important in order to make the better possible use of renewable based power generation, namely to minimize wind curtailment. An integrated approach, considering all the available energy resources, including demand response and storage, is crucial to attain these goals. This paper proposes a methodology for energy resource management that considers several Virtual Power Players (VPPs) managing a network with high penetration of distributed generation, demand response, storage units and network reconfiguration. The resources are controlled through a flexible SCADA (Supervisory Control And Data Acquisition) system that can be accessed by the evolved entities (VPPs) under contracted use conditions. A case study evidences the advantages of the proposed methodology to support a Virtual Power Player (VPP) managing the energy resources that it can access in an incident situation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multilevel negotiation mechanism for operating smart grids and negotiating in electricity markets considers the advantages of virtual power player management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Power Systems (PS), have been affected by substantial penetration of Distributed Generation (DG) and the operation in competitive environments. The future PS will have to deal with large-scale integration of DG and other distributed energy resources (DER), such as storage means, and provide to market agents the means to ensure a flexible and secure operation. Virtual power players (VPP) can aggregate a diversity of players, namely generators and consumers, and a diversity of energy resources, including electricity generation based on several technologies, storage and demand response. This paper proposes an artificial neural network (ANN) based methodology to support VPP resource schedule. The trained network is able to achieve good schedule results requiring modest computational means. A real data test case is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the energy management of the isolated operation of small power system, the economic scheduling of the generation units is a crucial problem. Applying right timing can maximize the performance of the supply. The optimal operation of a wind turbine, a solar unit, a fuel cell and a storage battery is searched by a mixed-integer linear programming implemented in General Algebraic Modeling Systems (GAMS). A Virtual Power Producer (VPP) can optimal operate the generation units, assured the good functioning of equipment, including the maintenance, operation cost and the generation measurement and control. A central control at system allows a VPP to manage the optimal generation and their load control. The application of methodology to a real case study in Budapest Tech, demonstrates the effectiveness of this method to solve the optimal isolated dispatch of the DC micro-grid renewable energy park. The problem has been converged in 0.09 s and 30 iterations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays computing technology research is focused on the development of Smart Environments. Following that line of thought several Smart Rooms projects were developed and their appliances are very diversified. The appliances include projects in the context of workplace or everyday living, entertainment, play and education. These appliances envisage to acquire and apply knowledge about the environment state in order to reason about it so as to define a desired state for its inhabitants and perform adaptation adaptation to these desires and therefore improving their involvement and satisfaction with that environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the last decade research in Group Decision Making area have been focus in the building of meeting rooms that could support the decision making task and improve the quality of those decisions. However the emergence of Ambient Intelligence concept contributes with a new perspective, a different way of viewing traditional decision rooms. In this paper we will present an overview of Smart Decision Rooms providing Intelligence to the meeting environment, and we will also present LAID, an Ambient Intelligence Environment oriented to support Group Decision Making and some of the software tools that we already have installed in this environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Decision Making is one of the most important activities of the human being. Nowadays decisions imply to consider many different points of view, so decisions are commonly taken by formal or informal groups of persons. Groups exchange ideas or engage in a process of argumentation and counter-argumentation, negotiate, cooperate, collaborate or even discuss techniques and/or methodologies for problem solving. Group Decision Making is a social activity in which the discussion and results consider a combination of rational and emotional aspects. In this paper we will present a Smart Decision Room, LAID (Laboratory of Ambient Intelligence for Decision Making). In LAID environment it is provided the support to meeting room participants in the argumentation and decision making processes, combining rational and emotional aspects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multiresidue gas chromatographic method for the determination of six fungicides (captan, chlorthalonil, folpet, iprodione, procymidone and vinclozolin) and one acaricide (dicofol) in still and fortified wines was developed. Solid-phase microextraction (SPME) was chosen for the extraction of the compounds from the studied matrices and tandem mass spectrometry (MS/MS) detection was used. The extraction consists in a solvent free and automated procedure and the detection is highly sensitive and selective. Good linearity was obtained with correlation coefficients of regression (R2) > 0.99 for all the compounds. Satisfactory results of repeatability and intermediate precision were obtained for most of the analytes (RSD < 20%). Recoveries from spiked wine ranged from 80.1% to 112.0%. Limits of quantification (LOQs) were considerably below the proposedmaximumresidue limits (MRLs) for these compounds in grapes and below the suggested limits for wine (MRLs/10), with the exception of captan.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a new method for single-drop microextraction (SDME) for the preconcentration of organochlorine pesticides (OCP) from complex matrices. It is based on the use of a silicone ring at the tip of the syringe. A 5 μL drop of n-hexane is applied to an aqueous extract containing the OCP and found to be adequate to preconcentrate the OCPs prior to analysis by GC in combination with tandem mass spectrometry. Fourteen OCP were determined using this technique in combination with programmable temperature vaporization. It is shown to have many advantages over traditional split/splitless injection. The effects of kind of organic solvent, exposure time, agitation and organic drop volume were optimized. Relative recoveries range from 59 to 117 %, with repeatabilities of <15 % (coefficient of variation) were achieved. The limits of detection range from 0.002 to 0.150 μg kg−1. The method was applied to the preconcentration of OCPs in fresh strawberry, strawberry jam, and soil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Total petroleum hydrocarbons (TPH) are important environmental contaminants which are toxic to human and environmental receptors. Several analytical methods have been used to quantify TPH levels in contaminated soils, specifically through infrared spectrometry (IR) and gas chromatography (GC). Despite being two of the most used techniques, some issues remain that have been inadequately studied: a) applicability of both techniques to soils contaminated with two distinct types of fuel (petrol and diesel), b) influence of the soil natural organic matter content on the results achieved by various analytical methods, and c) evaluation of the performance of both techniques in analyses of soils with different levels of contamination (presumably non-contaminated and potentially contaminated). The main objectives of this work were to answer these questions and to provide more complete information about the potentials and limitations of GC and IR techniques. The results led us to the following conclusions: a) IR analysis of soils contaminated with petrol is not suitable due to volatilisation losses, b) there is a significant influence of organic matter in IR analysis, and c) both techniques demonstrated the capacity to accurately quantify TPH in soils, irrespective of their contamination levels.