980 resultados para Biomass, dry mass, standard deviation
Resumo:
Biogenic particle fluxes from highly productive surface waters, boundary scavenging, and hydrothermal activity are the main factors influencing the deposition of radionuclides in the area of the Galapagos microplate, eastern Equatorial Pacific. In order to evaluate the importance of these three processes throughout the last 100 kyr, concentrations of the radionuclides 10Be, 230Th, and 231Pa, and of Mn and Fe were measured at high resolution in sediment samples from two gravity cores KLH 068 and KLH 093. High biological productivity in the surface waters overlying the investigated area has led to 10Be and 231Pa fluxes exceeding production during at least the last 30 kyr and probably the last 100 kyr. However, during periods of high productivity at the up welling centers off Peru and extension of the equatorial high-productivity zone, a relative loss of 10Be and 231Pa may have occurred in these sediment cores because of boundary scavenging. The effects of hydrothermal activity were investigated by comparing the 230Thex concentrations to the Mn/Fe ratios and by comparing the fluxes of 230Th and 10Be which exceed production. The results suggest an enhanced hydrothermal influence during isotope stages 4 and 5 and to a lesser extent during isotope stage 1 in core KLH 093. During isotope stages 2 and 3, the hydrothermal supply of Mn was deposited elsewhere, probably because of changes in current regime or deep water oxygenation. A strong increase of the Mn/Fe ratio at the beginning of climatic stage 1 which is not accompanied by an increase of the 230Thex concentration is interpreted to be an effect of Mn remobilization and reprecipitation in the sediment.
Resumo:
Seismic reflection studies in the maar lake Laguna Potrok Aike (51°58? S, 70°23? W) revealed an erosional unconformity associated with a sub-aquatic lake-level terrace at a water depth of 30m. Radiocarbon-dated, multi-proxy sediment studies of a piston core from this location indicate that the sediment below this discontinuity has an age of 45kyr BP (Oxygen Isotope Stage 3), and was deposited during an interval of high lake level. In comparison to the Holocene section, geochemical indicators of this older part of the record either point towards a different sediment source or to a different transport mechanism for Oxygen Isotope Stage 3 sediments. Holocene sedimentation started again before 6790cal. yr BP, providing a sediment record of hydrological variability until the present. Geochemical and isotopic data indicate a fluctuating lake level until 5310cal. yr BP. During the late Holocene the lake level shows a receding tendency. Nevertheless, the lake level did not drop below the 30m terrace to create another unconformity. The geochemical characterization of volcanic ashes reveals evidence for previously unknown explosive activity of the Reclús and Mt. Burney volcanoes during Oxygen Isotope Stage 3.
Resumo:
A high-resolution multiproxy geochemical approach was applied to the sediments of Laguna Potrok Aike in an attempt to reconstruct moist and dry periods during the past 16 000 years in southeastern Patagonia. The age-depth model is inferred from AMS 14C dates and tephrochronology, and suggests moist conditions during the Lateglacial and early Holocene (16 000-8700 cal. BP) interrupted by drier conditions before the beginning of the Holocene (13 200-11 400 cal. BP). Data also imply that this period was a major warm phase in southeastern Patagonia and was approximately contemporaneous with the Younger Dryas chronozone in the Northern Hemisphere (12 700-11 500 cal. BP). After 8650 cal. BP a major drought may have caused the lowest lake level of the record. Since 7300 cal. BP, the lake level rose and was variable until the 'Little Ice Age', which was the dominant humid period after 8650 cal. BP.
Resumo:
Ever since its discovery, Eocene Thermal Maximum 2 (ETM2; ~53.7 Ma) has been considered as one of the "little brothers" of the Paleocene-Eocene Thermal Maximum (PETM; ~56 Ma) as it displays similar characteristics including abrupt warming, ocean acidification, and biotic shifts. One of the remaining key questions is what effect these lesser climate perturbations had on ocean circulation and ventilation and, ultimately, biotic disruptions. Here we characterize ETM2 sections of the NE Atlantic (Deep Sea Drilling Project Sites 401 and 550) using multispecies benthic foraminiferal stable isotopes, grain size analysis, XRF core scanning, and carbonate content. The magnitude of the carbon isotope excursion (0.85-1.10 per mil) and bottom water warming (2-2.5°C) during ETM2 seems slightly smaller than in South Atlantic records. The comparison of the lateral d13C gradient between the North and South Atlantic reveals that a transient circulation switch took place during ETM2, a similar pattern as observed for the PETM. New grain size and published faunal data support this hypothesis by indicating a reduction in deepwater current velocity. Following ETM2, we record a distinct intensification of bottom water currents influencing Atlantic carbonate accumulation and biotic communities, while a dramatic and persistent clay reduction hints at a weakening of the regional hydrological cycle. Our findings highlight the similarities and differences between the PETM and ETM2. Moreover, the heterogeneity of hyperthermal expression emphasizes the need to specifically characterize each hyperthermal event and its background conditions to minimalize artifacts in global climate and carbonate burial models for the early Paleogene.
Resumo:
Heterocystous cyanobacteria of the genus Nodularia form extensive blooms in the Baltic Sea and contribute substantially to the total annual primary production. Moreover, they dispense a large fraction of new nitrogen to the ecosystem when inorganic nitrogen concentration in summer is low. Thus, it is of ecological importance to know how Nodularia will react to future environmental changes, in particular to increasing carbon dioxide (CO2) concentrations and what consequences there might arise for cycling of organic matter in the Baltic Sea. Here, we determined carbon (C) and dinitrogen (N2) fixation rates, growth, elemental stoichiometry of particulate organic matter and nitrogen turnover in batch cultures of the heterocystous cyanobacterium Nodularia spumigena under low (median 315 µatm), mid (median 353 µatm), and high (median 548 µatm) CO2 concentrations. Our results demonstrate an overall stimulating effect of rising pCO2 on C and N2 fixation, as well as on cell growth. An increase in pCO2 during incubation days 0 to 9 resulted in an elevation in growth rate by 84 ± 38% (low vs. high pCO2) and 40 ± 25% (mid vs. high pCO2), as well as in N2 fixation by 93 ± 35% and 38 ± 1%, respectively. C uptake rates showed high standard deviations within treatments and in between sampling days. Nevertheless, C fixation in the high pCO2 treatment was elevated compared to the other two treatments by 97% (high vs. low) and 44% (high vs. mid) at day 0 and day 3, but this effect diminished afterwards. Additionally, elevation in carbon to nitrogen and nitrogen to phosphorus ratios of the particulate biomass formed (POC : POP and PON : POP) was observed at high pCO2. Our findings suggest that rising pCO2 stimulates the growth of heterocystous diazotrophic cyanobacteria, in a similar way as reported for the non-heterocystous diazotroph Trichodesmium. Implications for biogeochemical cycling and food web dynamics, as well as ecological and socio-economical aspects in the Baltic Sea are discussed.
Resumo:
We measured oxygen isotopes and Mg/Ca ratios in the surface-dwelling planktonic foraminifer Globigerinoides ruber (white s.s.) and the thermocline dweller Pulleniatina obliquiloculata to investigate upper ocean spatial variability in the Indo-Pacific Warm Pool (IPWP). We focused on three critical time intervals: the Last Glacial Maximum (LGM; 18-21.5 ka), the early Holocene (8-9 ka), and the late Holocene (0-2 ka). Our records from 24 stations in the South China Sea, Timor Sea, Indonesian seas, and western Pacific indicate overall dry and cool conditions in the IPWP during the LGM with a low thermal gradient between surface and thermocline waters. During the early Holocene, sea surface temperatures increased by ~3°C over the entire region, indicating intensification of the IPWP. However, in the eastern Indian Ocean (Timor Sea), the thermocline gradually shoaled from the LGM to early Holocene, reflecting intensification of the subsurface Indonesian Throughflow (ITF). Increased surface salinity in the South China Sea during the Holocene appears related to northward displacement of the monsoonal rain belt over the Asian continent together with enhanced influx of saltier Pacific surface water through the Luzon Strait and freshwater export through the Java Sea. Opening of the freshwater portal through the Java Sea in the early Holocene led to a change in the vertical structure of the ITF from surface- to thermocline-dominated flow and to substantial freshening of Timor Sea thermocline waters.
Resumo:
One of the primary objectives of Leg 120 was to obtain a high-resolution Neogene stratigraphic section from the Kerguelen Plateau. Site 751, located in the central part of the Raggatt Basin on the Southern Kerguelen Plateau in 1633.8 m of water (57°43.56'S; 79°48.89'E), was selected as the dedicated Neogene site for this objective. High-resolution sampling at Site 751 was used to delineate in detail the Neogene ice-rafted debris (IRD) occurrences on the Kerguelen Plateau. The oldest IRD found at Site 751 was approximately 9.9 Ma, and it was not until approximately 8.5 Ma that significant concentrations of IRD were detected. The first major IRD event at this site occurred in the uppermost Miocene between 6.0 and 5.5 Ma. During this time period, a general climatic cooling and glacial expansion occurred on Antarctica. The late Miocene IRD event was followed by a continuous episode of elevated IRD deposition in the lowermost Pliocene between 4.5 and 4.1 Ma. The 0.4-m.y. duration and the timing of the early Pliocene IRD event on the Kerguelen Plateau corresponds with IRD fluxes observed on the Falkland Plateau and in the Weddell Abyssal Plain. This correspondence of data indicates that a major global climatic event occurred during the early Pliocene. The East Antarctic Ice Sheet may have experienced deglaciation between 4.5 and 4.1 Ma and, as a result, released large volumes of sediment-laden ice into the Southern Ocean.
Resumo:
Stable isotopes of sedimentary nitrogen and organic carbon are widely used as proxy variables for biogeochemical parameters and processes in the water column. In order to investigate alterations of the primary isotopic signal by sedimentary diagenetic processes, we determined concentrations and isotopic compositions of inorganic nitrogen (IN), organic nitrogen (ON), total nitrogen (TN), and total organic carbon (TOC) on one short core recovered from sediments of the eastern subtropical Atlantic, between the Canary Islands and the Moroccan coast. Changes with depth in concentration and isotopic composition of the different fractions were related to early diagenetic conditions indicated by pore water concentrations of oxygen, nitrate, and ammonium. Additionally, the nature of the organic matter was investigated by Rock-Eval pyrolysis and microscopic analysis. A decrease in ON during aerobic organic matter degradation is accompanied by an increase of the 15N/14N ratio. Changes in the isotopic composition of ON can be described by Rayleigh fractionation kinetics which are probably related to microbial metabolism. The influence of IN depleted in 15N on the bulk sedimentary (TN) isotope signal increases due to organic matter degradation, compensating partly the isotopic changes in ON. In anoxic sediments, fixation of ammonium between clay lattices results in a decrease of stable nitrogen isotope ratio of IN and TN. Changes in the carbon isotopic composition of TOC have to be explained by Rayleigh fractionation in combination with different remineralization kinetics of organic compounds with different isotopic composition. We have found no evidence for preferential preservation of terrestrial organic carbon. Instead, both TOC and refractory organic carbon are dominated by marine organic matter. Refractory organic carbon is depleted in 13C compared to TOC.
Resumo:
A sediment core from the West Spitsbergen continental margin was studied to reconstruct climate and paleoceanographic variability during the last ~9 ka in the eastern Fram Strait. Our multiproxy evidence suggests that the establishment of the modern oceanographic configuration in the eastern Fram Strait occurred stepwise, in response to the postglacial sea-level rise and the related onset of modern sea-ice production on the shallow Siberian shelves. The late Early and Mid Holocene interval (9 to 5 ka) was generally characterized by relatively unstable conditions. High abundance of the subpolar planktic foraminifer species Turborotalita quinqueloba implies strong intensity of Atlantic Water (AW) inflow with high productivity and/or high AW temperatures, resulting in a strong heat flux to the Arctic. A series of short-lived cooling events (8.2, 6.9. and 6.1 ka) occurred superimposed on the warm late Early and Mid Holocene conditions. Our proxy data imply that simultaneous to the complete postglacial flooding of Arctic shallow shelves and the initiation of modern sea-ice production, strong advance of polar waters initiated modern oceanographic conditions in the eastern Fram Strait at ~5.2 ka. The Late Holocene was marked by the dominance of the polar planktic foraminifer species Neogloboquadrina pachyderma, a significant expansion of sea ice/icebergs, and strong stratification of the water column. Although planktic foraminiferal assemblages as well as sea surface and subsurface temperatures suggest a return of slightly strengthened advection of subsurface Atlantic Water after 3 ka, a relatively stable cold-water layer prevailed at the sea surface and the study site was probably located within the seasonally fluctuating marginal ice zone during the Neoglacial period.
Resumo:
The effects of changing ice and atmospheric conditions on the upwelling of deep nutrient-laden waters and biological productivity in the coastal Beaufort Sea were quantified using a unique combination of in situ and remote-sensing approaches. Repeated instances of ice ablation and upwelling during fall 2007 and summer 2008 multiplied the production of ice algae, phytoplankton, zooplankton and benthos by 2 to 6 fold. Strong wind forcing failed to induce upward shifts in the biological productivity of stratified waters off the shelf.
Resumo:
Although the climate development over the Holocene in the Northern Hemisphere is well known, palaeolimnological climate reconstructions reveal spatiotemporal variability in northern Eurasia. Here we present a multi-proxy study from north-eastern Siberia combining sediment geochemistry, and diatom and pollen data from lake-sediment cores covering the last 38,000 cal. years. Our results show major changes in pyrite content and fragilarioid diatom species distributions, indicating prolonged seasonal lake-ice cover between ~13,500 and ~8,900 cal. years BP and possibly during the 8,200 cal. years BP cold event. A pollen-based climate reconstruction generated a mean July temperature of 17.8°C during the Holocene Thermal Maximum (HTM) between ~8,900 and ~4,500 cal. years BP. Naviculoid diatoms appear in the late Holocene indicating a shortening of the seasonal ice cover that continues today. Our results reveal a strong correlation between the applied terrestrial and aquatic indicators and natural seasonal climate dynamics in the Holocene. Planktonic diatoms show a strong response to changes in the lake ecosystem due to recent climate warming in the Anthropocene. We assess other palaeolimnological studies to infer the spatiotemporal pattern of the HTM and affirm that the timing of its onset, a difference of up to 3,000 years from north to south, can be well explained by climatic teleconnections. The westerlies brought cold air to this part of Siberia until the Laurentide ice-sheet vanished 7,000 years ago. The apparent delayed ending of the HTM in the central Siberian record can be ascribed to the exceedance of ecological thresholds trailing behind increases in winter temperatures and decreases in contrast in insolation between seasons during the mid to late Holocene as well as lacking differentiation between summer and winter trends in paleolimnological reconstructions.