1000 resultados para Biological laboratories
Resumo:
Deficiencies in the mismatch repair (MMR) pathway are associated with several types of cancers, as well as resistance to commonly used chemotherapeutics. Rhodium metalloinsertors have been found to bind DNA mismatches with high affinity and specificity in vitro, and also exhibit cell-selective cytotoxicity, targeting MMR-deficient cells over MMR-proficient cells.
Here we examine the biological fate of rhodium metalloinsertors bearing dipyridylamine ancillary ligands. These complexes are shown to exhibit accelerated cellular uptake which permits the observation of various cellular responses, including disruption of the cell cycle and induction of necrosis, which occur preferentially in the MMR-deficient cell line. These cellular responses provide insight into the mechanisms underlying the selective activity of this novel class of targeted anti-cancer agents.
In addition, ten distinct metalloinsertors with varying lipophilicities are synthesized and their mismatch binding affinities and biological activities studied. While they are found to have similar binding affinities, their cell-selective antiproliferative and cytotoxic activities vary significantly. Inductively coupled plasma mass spectrometry (ICP-MS) experiments show that all of these metalloinsertors localize in the nucleus at sufficient concentrations for binding to DNA mismatches. Furthermore, metalloinsertors with high rhodium localization in the mitochondria show toxicity that is not selective for MMR-deficient cells. This work supports the notion that specific targeting of the metalloinsertors to nuclear DNA gives rise to their cytotoxic and antiproliferative activities that are selective for cells deficient in MMR.
To explore further the basis of the unique selectivity of the metlloinsertors in targeting MMR-deficient cells, experiments were conducted using engineered NCI-H23 lung adenocarcinoma cells that contain a doxycycline-inducible shRNA which suppresses the expression of the MMR gene MLH1. Here we use this new cell line to further validate rhodium metalloinsertors as compounds capable of differentially inhibiting the proliferation of MMR-deficient cancer cells over isogenic MMR-proficient cells. General DNA damaging agents, such as cisplatin and etoposide, in contrast, are less effective in the induced cell line defective in MMR.
Finally, we describe a new subclass of metalloinsertors with enhanced potency and selectivity, in which the complexes show Rh-O coordination. In particular, it has been found that both Δ and Λ enantiomers of [Rh(chrysi)(phen)(DPE)]2+ bind to DNA with similar affinities, suggesting a possible different binding conformation than previous metalloinsertors. Remarkably, all members of this new family of compounds have significantly increased potency in a range of cellular assays; indeed, all are more potent than the FDA-approved anticancer drugs cisplatin and MNNG. Moreover, these activities are coupled with high levels of selectivity for MMR-deficient cells.
Resumo:
Being able to detect a single molecule without the use of labels has been a long standing goal of bioengineers and physicists. This would simplify applications ranging from single molecular binding studies to those involving public health and security, improved drug screening, medical diagnostics, and genome sequencing. One promising technique that has the potential to detect single molecules is the microtoroid optical resonator. The main obstacle to detecting single molecules, however, is decreasing the noise level of the measurements such that a single molecule can be distinguished from background. We have used laser frequency locking in combination with balanced detection and data processing techniques to reduce the noise level of these devices and report the detection of a wide range of nanoscale objects ranging from nanoparticles with radii from 100 to 2.5 nm, to exosomes, ribosomes, and single protein molecules (mouse immunoglobulin G and human interleukin-2). We further extend the exosome results towards creating a non-invasive tumor biopsy assay. Our results, covering several orders of magnitude of particle radius (100 nm to 2 nm), agree with the `reactive' model prediction for the frequency shift of the resonator upon particle binding. In addition, we demonstrate that molecular weight may be estimated from the frequency shift through a simple formula, thus providing a basis for an ``optical mass spectrometer'' in solution. We anticipate that our results will enable many applications, including more sensitive medical diagnostics and fundamental studies of single receptor-ligand and protein-protein interactions in real time. The thesis summarizes what we have achieved thus far and shows that the goal of detecting a single molecule without the use of labels can now be realized.
Resumo:
Apart from a couple of early papers in the 1600s, the development of freshwater biology as a science in Mexico began in the last century. Taxonomic studies were made especially on algae, aquatic insects, crustaceans, annelid worms and aquatic plants. The great impetus acquired by limnology in Europe and America in the first half of the 20th Century stimulated foreign researchers to come and work in Mexico. During this period the Instituto de Biologia, belonging to the Universidad Nacional Autonoma de Mexico, was created in 1930. The Institute had a section of Hydrobiology that contributed to the limnological characterization of Mexican lakes and ponds. In 1962, the Instituto Nacional de Investigaciones Biologico-Pesqueras was created to bring together the work of several institutes working on the native ichthyofauna, the restocking of reservoirs, and aquaculture.
Resumo:
In 1990, "BICER" or the Baikal International Centre for Ecological Research was created to foster collaborative research on Lake Baikal. The British effort in BICER was initiated and is administered by the Royal Society, London. Much of the on-going research effort is now focussed on environmental change, as there is increasing concern about recent changes in the lake's unique ecosystem that could be linked with the effects of water pollution from catchment effluents. Monitoring studies of the phytoplankton in Lake Baikal's southern basin indicate that several species have increased in abundance since the mid-70's. Diatoms in Lake Baikal sediments are also being studied.
Resumo:
In 1937 the Development Commission provided an annual grant to the Freshwater Biological Association to pay for a director and secretary. The author moved to the Lake District in the same year, and at that time T.T. Macan was working on invertebrates; K.R. Allen on fish; C.H. Mortimer on chemistry and physics of the aquatic environment, and Marie Rosenberg on phytoplankton. They were backed by George Thompson as laboratory assistant and Rosa Bullen as secretary. The work of the Association continued and expanded throughout the Second World War with some far-reached discoveries made. For example, the recovery of lake sediment cores and the examination of diatom remains, so starting the discipline of archaeo-limnology. Also, a hydrological survey of the Windermere catchment area found significant traces of sulphuric acid in rain gauges. This was more than 30 years before "acid rain" became fashionable.
Resumo:
This work quantifies the nature of delays in genetic regulatory networks and their effect on system dynamics. It is known that a time lag can emerge from a sequence of biochemical reactions. Applying this modeling framework to the protein production processes, delay distributions are derived in a stochastic (probability density function) and deterministic setting (impulse function), whilst being shown to be equivalent under different assumptions. The dependence of the distribution properties on rate constants, gene length, and time-varying temperatures is investigated. Overall, the distribution of the delay in the context of protein production processes is shown to be highly dependent on the size of the genes and mRNA strands as well as the reaction rates. Results suggest longer genes have delay distributions with a smaller relative variance, and hence, less uncertainty in the completion times, however, they lead to larger delays. On the other hand large uncertainties may actually play a positive role, as broader distributions can lead to larger stability regions when this formalization of the protein production delays is incorporated into a feedback system.
Furthermore, evidence suggests that delays may play a role as an explicit design into existing controlling mechanisms. Accordingly, the reccurring dual-feedback motif is also investigated with delays incorporated into the feedback channels. The dual-delayed feedback is shown to have stabilizing effects through a control theoretic approach. Lastly, a distributed delay based controller design method is proposed as a potential design tool. In a preliminary study, the dual-delayed feedback system re-emerges as an effective controller design.
Resumo:
Basically this report is an attempt to document trends in oyster recruitment since 1939 and to relate those trends to the actual oyster harvest throughout the Maryland portion of the Chesapeake Bay. It is also hoped that the data as well as the charts compiled in this report will serve as a reference to aid in future studies on Chesapeake Bay oysters. A few if the major biological factors that affect the natural reproduction of the oyster and environmental degradations that may possibly affect oyster reproduction or harvest in the Chesapeake Bay are also briefly discussed. (PDF contains 32 pages)
Resumo:
The year 2004 marked the 75th anniversary of the Freshwater Biological Association. The author reflects the history of the Association focusing on the main events of the last 25 years since 1979.
Resumo:
This article introduces a new listing of published scientific contributions from the Freshwater Biological Association (FBA) and its later Research Council associates – the Institute of Freshwater Ecology (1989–2000) and the Centre for Ecology and Hydrology (2000+). The period 1929–2006 is covered. The authors offer also information on specific features of the listing; also an outline of influences that underlay the research, and its scientific scope.
Resumo:
The Barton laboratory has established that octahedral rhodium complexes bearing the sterically expansive 5,6-chrysene diimine ligand can target thermodynamically destabilized sites, such as base pair mismatches, in DNA with high affinity and selectivity. These complexes approach DNA from the minor groove, ejecting the mismatched base pairs from the duplex in a binding mode termed metalloinsertion. In recent years, we have shown that these metalloinsertor complexes also exhibit cytotoxicity preferentially in cancer cells that are deficient in the mismatch repair (MMR) machinery.
Here, we establish that a sensitive structure-activity relationship exists for rhodium metalloinsertors. We studied the relationship between the chemical structures of metalloinsertors and their effect on biological activity for ten complexes with similar DNA binding affinities, but wide variation in their lipophilicity. Drastic differences were observed in the selectivities of the complexes for MMR-deficient cells. Compounds with hydrophilic ligands were highly selective, exhibiting preferential cytotoxicity in MMR-deficient cells at low concentrations and short incubation periods, whereas complexes with lipophilic ligands displayed poor cell-selectivity. It was discovered that all of the complexes localized to the nucleus in concentrations sufficient for mismatch binding; however, highly lipophilic complexes also exhibited high mitochondrial uptake. Significantly, these results support the notion that mitochondrial DNA is not the desired target for our metalloinsertor complexes; instead, selectivity stems from targeting mismatches in genomic DNA.
We have also explored the potential for metalloinsertors to be developed into more complex structures with multiple functionalities that could either enhance their overall potency or impart mismatch selectivity onto other therapeutic cargo. We have constructed a family of bifunctional metalloinsertor conjugates incorporating cis-platinum, each unique in its chemical structure, DNA binding interactions, and biological activity. The study of these complexes in MMR-deficient cells has established that the cell-selective biological activity of rhodium metalloinsertors proceeds through a critical cellular pathway leading to necrosis.
We further explored the underlying mechanisms surrounding the biological response to mismatch recognition by metalloinsertors in the genome. Immunofluorescence assays of MMR-deficient and MMR-proficient cells revealed that a critical biomarker for DNA damage, phosphorylation of histone H2AX (γH2AX) rapidly accumulates in response to metalloinsertor treatment, signifying the induction of double strand breaks in the genome. Significantly, we have discovered that our metalloinsertor complexes selectively inhibit transcription in MMR-deficient cells, which may be a crucial checkpoint in the eventual breakdown of the cell via necrosis. Additionally, preliminary in vivo studies have revealed the capability of these compounds to traverse the complex environments of multicellular organisms and accumulate in MMR-deficient tumors. Our ever-increasing understanding of metalloinsertors, as well as the development of new generations of complexes both monofunctional and bifunctional, enables their continued progress into the clinic as promising new chemotherapeutic agents.
Resumo:
Computation technology has dramatically changed the world around us; you can hardly find an area where cell phones have not saturated the market, yet there is a significant lack of breakthroughs in the development to integrate the computer with biological environments. This is largely the result of the incompatibility of the materials used in both environments; biological environments and experiments tend to need aqueous environments. To help aid in these development chemists, engineers, physicists and biologists have begun to develop microfluidics to help bridge this divide. Unfortunately, the microfluidic devices required large external support equipment to run the device. This thesis presents a series of several microfluidic methods that can help integrate engineering and biology by exploiting nanotechnology to help push the field of microfluidics back to its intended purpose, small integrated biological and electrical devices. I demonstrate this goal by developing different methods and devices to (1) separate membrane bound proteins with the use of microfluidics, (2) use optical technology to make fiber optic cables into protein sensors, (3) generate new fluidic devices using semiconductor material to manipulate single cells, and (4) develop a new genetic microfluidic based diagnostic assay that works with current PCR methodology to provide faster and cheaper results. All of these methods and systems can be used as components to build a self-contained biomedical device.
Resumo:
Parasitic and infectious diseases of fish, of wide distribution in fish-rearing ponds, retard to a significant extent the development of fish culture in the Ukraine. One of the diseases of fish attracting attention in connection with the general distribution of its causative agent, the fungus Saprolegnia parasitica Coker, in water-bodies of various types, appears to be dermatomycosis. The aim of this investigation is to study the conditions favouring the development of S. parasitica. Among the studied factors were water temperature and oxygen content.
Resumo:
The winter eggs of Daphnia pulex, after passing safely through the winter , develop and hatch in the spring, multiplying by themselves, while some males emerging among them with the changes in environment produce fertile eggs, which are universally known as winter eggs . This study researches the factors governing the development of winter eggs through experiments.
Resumo:
Biomolecular circuit engineering is critical for implementing complex functions in vivo, and is a baseline method in the synthetic biology space. However, current methods for conducting biomolecular circuit engineering are time-consuming and tedious. A complete design-build-test cycle typically takes weeks' to months' time due to the lack of an intermediary between design ex vivo and testing in vivo. In this work, we explore the development and application of a "biomolecular breadboard" composed of an in-vitro transcription-translation (TX-TL) lysate to rapidly speed up the engineering design-build-test cycle. We first developed protocols for creating and using lysates for conducting biological circuit design. By doing so we simplified the existing technology to an affordable ($0.03/uL) and easy to use three-tube reagent system. We then developed tools to accelerate circuit design by allowing for linear DNA use in lieu of plasmid DNA, and by utilizing principles of modular assembly. This allowed the design-build-test cycle to be reduced to under a business day. We then characterized protein degradation dynamics in the breadboard to aid to implementing complex circuits. Finally, we demonstrated that the breadboard could be applied to engineer complex synthetic circuits in vitro and in vivo. Specifically, we utilized our understanding of linear DNA prototyping, modular assembly, and protein degradation dynamics to characterize the repressilator oscillator and to prototype novel three- and five-node negative feedback oscillators both in vitro and in vivo. We therefore believe the biomolecular breadboard has wide application for acting as an intermediary for biological circuit engineering.