947 resultados para Bio-inspired optimization techniques


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The amount of biological data has grown exponentially in recent decades. Modern biotechnologies, such as microarrays and next-generation sequencing, are capable to produce massive amounts of biomedical data in a single experiment. As the amount of the data is rapidly growing there is an urgent need for reliable computational methods for analyzing and visualizing it. This thesis addresses this need by studying how to efficiently and reliably analyze and visualize high-dimensional data, especially that obtained from gene expression microarray experiments. First, we will study the ways to improve the quality of microarray data by replacing (imputing) the missing data entries with the estimated values for these entries. Missing value imputation is a method which is commonly used to make the original incomplete data complete, thus making it easier to be analyzed with statistical and computational methods. Our novel approach was to use curated external biological information as a guide for the missing value imputation. Secondly, we studied the effect of missing value imputation on the downstream data analysis methods like clustering. We compared multiple recent imputation algorithms against 8 publicly available microarray data sets. It was observed that the missing value imputation indeed is a rational way to improve the quality of biological data. The research revealed differences between the clustering results obtained with different imputation methods. On most data sets, the simple and fast k-NN imputation was good enough, but there were also needs for more advanced imputation methods, such as Bayesian Principal Component Algorithm (BPCA). Finally, we studied the visualization of biological network data. Biological interaction networks are examples of the outcome of multiple biological experiments such as using the gene microarray techniques. Such networks are typically very large and highly connected, thus there is a need for fast algorithms for producing visually pleasant layouts. A computationally efficient way to produce layouts of large biological interaction networks was developed. The algorithm uses multilevel optimization within the regular force directed graph layout algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to analyze the agreement between measurements of unloaded oxygen uptake and peak oxygen uptake based on equations proposed by Wasserman and on real measurements directly obtained with the ergospirometry system. We performed an incremental cardiopulmonary exercise test (CPET), which was applied to two groups of sedentary male subjects: one apparently healthy group (HG, n=12) and the other had stable coronary artery disease (n=16). The mean age in the HG was 47±4 years and that in the coronary artery disease group (CG) was 57±8 years. Both groups performed CPET on a cycle ergometer with a ramp-type protocol at an intensity that was calculated according to the Wasserman equation. In the HG, there was no significant difference between measurements predicted by the formula and real measurements obtained in CPET in the unloaded condition. However, at peak effort, a significant difference was observed between oxygen uptake (V˙O2)peak(predicted)and V˙O2peak(real)(nonparametric Wilcoxon test). In the CG, there was a significant difference of 116.26 mL/min between the predicted values by the formula and the real values obtained in the unloaded condition. A significant difference in peak effort was found, where V˙O2peak(real)was 40% lower than V˙O2peak(predicted)(nonparametric Wilcoxon test). There was no agreement between the real and predicted measurements as analyzed by Lin’s coefficient or the Bland and Altman model. The Wasserman formula does not appear to be appropriate for prediction of functional capacity of volunteers. Therefore, this formula cannot precisely predict the increase in power in incremental CPET on a cycle ergometer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of cost efficient, selective and sustainable chemical processes for production of chiral building blocks is of great importance in synthetic and industrial organic chemistry. One way to reach these objectives is to carry out several reactions steps in one vessel at one time. Furthermore, when this kind of one-pot multi step reactions are catalyzed by heterogeneous chemo- and bio-catalysts, which can be separated from the reaction products by filtration, practical access to chiral small molecules for further utilization can be obtained. The initial reactions studied in this thesis are the two step dynamic kinetic resolution of rac-2-hydroxy-1-indanone and the regioselective hydrogenation of 1,2-indanedione. These reactions are then combined in a new heterogeneously catalyzed one-pot reaction sequence enabling simple recovery of the catalysts by filtration, facilitating simple reaction product isolation. Conclusively, the readily available 1,2-indanedione is by the presented one-pot sequence, utilizing heterogeneous enzyme and transition metal based catalysts, transferred with high regio- and stereoselectivity to a useful chiral vicinal hydroxyl ketone structure. Additional and complementary investigation of homogeneous half-sandwich ruthenium complexes for catalyzing the epimerization of chiral secondary alcohols of five natural products containing additional non-functionalized stereocenters was conducted. In principle, this kind of epimerization reactions of single stereocenters could be utilized for converting inexpensive starting materials, containing other stereogenic centers, into diastereomeric mixtures from which more valuable compounds can be isolated by traditional isolation techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research focuses on generating aesthetically pleasing images in virtual environments using the particle swarm optimization (PSO) algorithm. The PSO is a stochastic population based search algorithm that is inspired by the flocking behavior of birds. In this research, we implement swarms of cameras flying through a virtual world in search of an image that is aesthetically pleasing. Virtual world exploration using particle swarm optimization is considered to be a new research area and is of interest to both the scientific and artistic communities. Aesthetic rules such as rule of thirds, subject matter, colour similarity and horizon line are all analyzed together as a multi-objective problem to analyze and solve with rendered images. A new multi-objective PSO algorithm, the sum of ranks PSO, is introduced. It is empirically compared to other single-objective and multi-objective swarm algorithms. An advantage of the sum of ranks PSO is that it is useful for solving high-dimensional problems within the context of this research. Throughout many experiments, we show that our approach is capable of automatically producing images satisfying a variety of supplied aesthetic criteria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Population-based metaheuristics, such as particle swarm optimization (PSO), have been employed to solve many real-world optimization problems. Although it is of- ten sufficient to find a single solution to these problems, there does exist those cases where identifying multiple, diverse solutions can be beneficial or even required. Some of these problems are further complicated by a change in their objective function over time. This type of optimization is referred to as dynamic, multi-modal optimization. Algorithms which exploit multiple optima in a search space are identified as niching algorithms. Although numerous dynamic, niching algorithms have been developed, their performance is often measured solely on their ability to find a single, global optimum. Furthermore, the comparisons often use synthetic benchmarks whose landscape characteristics are generally limited and unknown. This thesis provides a landscape analysis of the dynamic benchmark functions commonly developed for multi-modal optimization. The benchmark analysis results reveal that the mechanisms responsible for dynamism in the current dynamic bench- marks do not significantly affect landscape features, thus suggesting a lack of representation for problems whose landscape features vary over time. This analysis is used in a comparison of current niching algorithms to identify the effects that specific landscape features have on niching performance. Two performance metrics are proposed to measure both the scalability and accuracy of the niching algorithms. The algorithm comparison results demonstrate the algorithms best suited for a variety of dynamic environments. This comparison also examines each of the algorithms in terms of their niching behaviours and analyzing the range and trade-off between scalability and accuracy when tuning the algorithms respective parameters. These results contribute to the understanding of current niching techniques as well as the problem features that ultimately dictate their success.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La survie des réseaux est un domaine d'étude technique très intéressant ainsi qu'une préoccupation critique dans la conception des réseaux. Compte tenu du fait que de plus en plus de données sont transportées à travers des réseaux de communication, une simple panne peut interrompre des millions d'utilisateurs et engendrer des millions de dollars de pertes de revenu. Les techniques de protection des réseaux consistent à fournir une capacité supplémentaire dans un réseau et à réacheminer les flux automatiquement autour de la panne en utilisant cette disponibilité de capacité. Cette thèse porte sur la conception de réseaux optiques intégrant des techniques de survie qui utilisent des schémas de protection basés sur les p-cycles. Plus précisément, les p-cycles de protection par chemin sont exploités dans le contexte de pannes sur les liens. Notre étude se concentre sur la mise en place de structures de protection par p-cycles, et ce, en supposant que les chemins d'opération pour l'ensemble des requêtes sont définis a priori. La majorité des travaux existants utilisent des heuristiques ou des méthodes de résolution ayant de la difficulté à résoudre des instances de grande taille. L'objectif de cette thèse est double. D'une part, nous proposons des modèles et des méthodes de résolution capables d'aborder des problèmes de plus grande taille que ceux déjà présentés dans la littérature. D'autre part, grâce aux nouveaux algorithmes, nous sommes en mesure de produire des solutions optimales ou quasi-optimales. Pour ce faire, nous nous appuyons sur la technique de génération de colonnes, celle-ci étant adéquate pour résoudre des problèmes de programmation linéaire de grande taille. Dans ce projet, la génération de colonnes est utilisée comme une façon intelligente d'énumérer implicitement des cycles prometteurs. Nous proposons d'abord des formulations pour le problème maître et le problème auxiliaire ainsi qu'un premier algorithme de génération de colonnes pour la conception de réseaux protegées par des p-cycles de la protection par chemin. L'algorithme obtient de meilleures solutions, dans un temps raisonnable, que celles obtenues par les méthodes existantes. Par la suite, une formulation plus compacte est proposée pour le problème auxiliaire. De plus, nous présentons une nouvelle méthode de décomposition hiérarchique qui apporte une grande amélioration de l'efficacité globale de l'algorithme. En ce qui concerne les solutions en nombres entiers, nous proposons deux méthodes heurisiques qui arrivent à trouver des bonnes solutions. Nous nous attardons aussi à une comparaison systématique entre les p-cycles et les schémas classiques de protection partagée. Nous effectuons donc une comparaison précise en utilisant des formulations unifiées et basées sur la génération de colonnes pour obtenir des résultats de bonne qualité. Par la suite, nous évaluons empiriquement les versions orientée et non-orientée des p-cycles pour la protection par lien ainsi que pour la protection par chemin, dans des scénarios de trafic asymétrique. Nous montrons quel est le coût de protection additionnel engendré lorsque des systèmes bidirectionnels sont employés dans de tels scénarios. Finalement, nous étudions une formulation de génération de colonnes pour la conception de réseaux avec des p-cycles en présence d'exigences de disponibilité et nous obtenons des premières bornes inférieures pour ce problème.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Parmi les méthodes d’estimation de paramètres de loi de probabilité en statistique, le maximum de vraisemblance est une des techniques les plus populaires, comme, sous des conditions l´egères, les estimateurs ainsi produits sont consistants et asymptotiquement efficaces. Les problèmes de maximum de vraisemblance peuvent être traités comme des problèmes de programmation non linéaires, éventuellement non convexe, pour lesquels deux grandes classes de méthodes de résolution sont les techniques de région de confiance et les méthodes de recherche linéaire. En outre, il est possible d’exploiter la structure de ces problèmes pour tenter d’accélerer la convergence de ces méthodes, sous certaines hypothèses. Dans ce travail, nous revisitons certaines approches classiques ou récemment d´eveloppées en optimisation non linéaire, dans le contexte particulier de l’estimation de maximum de vraisemblance. Nous développons également de nouveaux algorithmes pour résoudre ce problème, reconsidérant différentes techniques d’approximation de hessiens, et proposons de nouvelles méthodes de calcul de pas, en particulier dans le cadre des algorithmes de recherche linéaire. Il s’agit notamment d’algorithmes nous permettant de changer d’approximation de hessien et d’adapter la longueur du pas dans une direction de recherche fixée. Finalement, nous évaluons l’efficacité numérique des méthodes proposées dans le cadre de l’estimation de modèles de choix discrets, en particulier les modèles logit mélangés.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Les facteurs de transcription sont des protéines spécialisées qui jouent un rôle important dans différents processus biologiques tel que la différenciation, le cycle cellulaire et la tumorigenèse. Ils régulent la transcription des gènes en se fixant sur des séquences d’ADN spécifiques (éléments cis-régulateurs). L’identification de ces éléments est une étape cruciale dans la compréhension des réseaux de régulation des gènes. Avec l’avènement des technologies de séquençage à haut débit, l’identification de tout les éléments fonctionnels dans les génomes, incluant gènes et éléments cis-régulateurs a connu une avancée considérable. Alors qu’on est arrivé à estimer le nombre de gènes chez différentes espèces, l’information sur les éléments qui contrôlent et orchestrent la régulation de ces gènes est encore mal définie. Grace aux techniques de ChIP-chip et de ChIP-séquençage il est possible d’identifier toutes les régions du génome qui sont liées par un facteur de transcription d’intérêt. Plusieurs approches computationnelles ont été développées pour prédire les sites fixés par les facteurs de transcription. Ces approches sont classées en deux catégories principales: les algorithmes énumératifs et probabilistes. Toutefois, plusieurs études ont montré que ces approches génèrent des taux élevés de faux négatifs et de faux positifs ce qui rend difficile l’interprétation des résultats et par conséquent leur validation expérimentale. Dans cette thèse, nous avons ciblé deux objectifs. Le premier objectif a été de développer une nouvelle approche pour la découverte des sites de fixation des facteurs de transcription à l’ADN (SAMD-ChIP) adaptée aux données de ChIP-chip et de ChIP-séquençage. Notre approche implémente un algorithme hybride qui combine les deux stratégies énumérative et probabiliste, afin d’exploiter les performances de chacune d’entre elles. Notre approche a montré ses performances, comparée aux outils de découvertes de motifs existants sur des jeux de données simulées et des jeux de données de ChIP-chip et de ChIP-séquençage. SAMD-ChIP présente aussi l’avantage d’exploiter les propriétés de distributions des sites liés par les facteurs de transcription autour du centre des régions liées afin de limiter la prédiction aux motifs qui sont enrichis dans une fenêtre de longueur fixe autour du centre de ces régions. Les facteurs de transcription agissent rarement seuls. Ils forment souvent des complexes pour interagir avec l’ADN pour réguler leurs gènes cibles. Ces interactions impliquent des facteurs de transcription dont les sites de fixation à l’ADN sont localisés proches les uns des autres ou bien médier par des boucles de chromatine. Notre deuxième objectif a été d’exploiter la proximité spatiale des sites liés par les facteurs de transcription dans les régions de ChIP-chip et de ChIP-séquençage pour développer une approche pour la prédiction des motifs composites (motifs composés par deux sites et séparés par un espacement de taille fixe). Nous avons testé ce module pour prédire la co-localisation entre les deux demi-sites ERE qui forment le site ERE, lié par le récepteur des œstrogènes ERα. Ce module a été incorporé à notre outil de découverte de motifs SAMD-ChIP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L’apprentissage supervisé de réseaux hiérarchiques à grande échelle connaît présentement un succès fulgurant. Malgré cette effervescence, l’apprentissage non-supervisé représente toujours, selon plusieurs chercheurs, un élément clé de l’Intelligence Artificielle, où les agents doivent apprendre à partir d’un nombre potentiellement limité de données. Cette thèse s’inscrit dans cette pensée et aborde divers sujets de recherche liés au problème d’estimation de densité par l’entremise des machines de Boltzmann (BM), modèles graphiques probabilistes au coeur de l’apprentissage profond. Nos contributions touchent les domaines de l’échantillonnage, l’estimation de fonctions de partition, l’optimisation ainsi que l’apprentissage de représentations invariantes. Cette thèse débute par l’exposition d’un nouvel algorithme d'échantillonnage adaptatif, qui ajuste (de fa ̧con automatique) la température des chaînes de Markov sous simulation, afin de maintenir une vitesse de convergence élevée tout au long de l’apprentissage. Lorsqu’utilisé dans le contexte de l’apprentissage par maximum de vraisemblance stochastique (SML), notre algorithme engendre une robustesse accrue face à la sélection du taux d’apprentissage, ainsi qu’une meilleure vitesse de convergence. Nos résultats sont présent ́es dans le domaine des BMs, mais la méthode est générale et applicable à l’apprentissage de tout modèle probabiliste exploitant l’échantillonnage par chaînes de Markov. Tandis que le gradient du maximum de vraisemblance peut-être approximé par échantillonnage, l’évaluation de la log-vraisemblance nécessite un estimé de la fonction de partition. Contrairement aux approches traditionnelles qui considèrent un modèle donné comme une boîte noire, nous proposons plutôt d’exploiter la dynamique de l’apprentissage en estimant les changements successifs de log-partition encourus à chaque mise à jour des paramètres. Le problème d’estimation est reformulé comme un problème d’inférence similaire au filtre de Kalman, mais sur un graphe bi-dimensionnel, où les dimensions correspondent aux axes du temps et au paramètre de température. Sur le thème de l’optimisation, nous présentons également un algorithme permettant d’appliquer, de manière efficace, le gradient naturel à des machines de Boltzmann comportant des milliers d’unités. Jusqu’à présent, son adoption était limitée par son haut coût computationel ainsi que sa demande en mémoire. Notre algorithme, Metric-Free Natural Gradient (MFNG), permet d’éviter le calcul explicite de la matrice d’information de Fisher (et son inverse) en exploitant un solveur linéaire combiné à un produit matrice-vecteur efficace. L’algorithme est prometteur: en terme du nombre d’évaluations de fonctions, MFNG converge plus rapidement que SML. Son implémentation demeure malheureusement inefficace en temps de calcul. Ces travaux explorent également les mécanismes sous-jacents à l’apprentissage de représentations invariantes. À cette fin, nous utilisons la famille de machines de Boltzmann restreintes “spike & slab” (ssRBM), que nous modifions afin de pouvoir modéliser des distributions binaires et parcimonieuses. Les variables latentes binaires de la ssRBM peuvent être rendues invariantes à un sous-espace vectoriel, en associant à chacune d’elles, un vecteur de variables latentes continues (dénommées “slabs”). Ceci se traduit par une invariance accrue au niveau de la représentation et un meilleur taux de classification lorsque peu de données étiquetées sont disponibles. Nous terminons cette thèse sur un sujet ambitieux: l’apprentissage de représentations pouvant séparer les facteurs de variations présents dans le signal d’entrée. Nous proposons une solution à base de ssRBM bilinéaire (avec deux groupes de facteurs latents) et formulons le problème comme l’un de “pooling” dans des sous-espaces vectoriels complémentaires.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La série Body Techniques (2007) a été réalisée par l’artiste britannique Carey Young dans le cadre d’une résidence offerte par la biennale de Sharjah, aux Émirats Arabes Unis. Les huit photographies de format tableau constituant la série montrent l’artiste qui, portant l’uniforme d’une femme d’affaires, réinterprète huit œuvres célèbres associées à la mouvance de l’art conceptuel. Des paysages singuliers, situés aux abords des villes de Sharjah et Dubaï, servent de toile de fond à ces actions et leur confèrent une aura futuriste. La présente analyse tâche de démontrer que la série est habitée par un paradoxe remettant en question le statut d’art engagé que l’artiste revendique pour son œuvre. Ce paradoxe se manifeste à travers trois axes, autour desquels s’articule notre réflexion : les médiations se glissant entre Body Techniques et les œuvres que la série réinterprète, la déconstruction du « médium » du paysage, et le rôle actif occupé par le dispositif photographique. Cet examen attentif de chacune des occurrences du paradoxe permet de révéler Body Techniques comme une incarnation exemplaire de la double contrainte traversant toute œuvre d’art contemporain engagé : celle permettant aux artistes de critiquer le système auquel ils participent, mais les forçant en retour à participer au système qu’ils critiquent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Le cancer du sein est le cancer le plus fréquent chez la femme. Il demeure la cause de mortalité la plus importante chez les femmes âgées entre 35 et 55 ans. Au Canada, plus de 20 000 nouveaux cas sont diagnostiqués chaque année. Les études scientifiques démontrent que l'espérance de vie est étroitement liée à la précocité du diagnostic. Les moyens de diagnostic actuels comme la mammographie, l'échographie et la biopsie comportent certaines limitations. Par exemple, la mammographie permet de diagnostiquer la présence d’une masse suspecte dans le sein, mais ne peut en déterminer la nature (bénigne ou maligne). Les techniques d’imagerie complémentaires comme l'échographie ou l'imagerie par résonance magnétique (IRM) sont alors utilisées en complément, mais elles sont limitées quant à la sensibilité et la spécificité de leur diagnostic, principalement chez les jeunes femmes (< 50 ans) ou celles ayant un parenchyme dense. Par conséquent, nombreuses sont celles qui doivent subir une biopsie alors que leur lésions sont bénignes. Quelques voies de recherche sont privilégiées depuis peu pour réduire l`incertitude du diagnostic par imagerie ultrasonore. Dans ce contexte, l’élastographie dynamique est prometteuse. Cette technique est inspirée du geste médical de palpation et est basée sur la détermination de la rigidité des tissus, sachant que les lésions en général sont plus rigides que le tissu sain environnant. Le principe de cette technique est de générer des ondes de cisaillement et d'en étudier la propagation de ces ondes afin de remonter aux propriétés mécaniques du milieu via un problème inverse préétabli. Cette thèse vise le développement d'une nouvelle méthode d'élastographie dynamique pour le dépistage précoce des lésions mammaires. L'un des principaux problèmes des techniques d'élastographie dynamiques en utilisant la force de radiation est la forte atténuation des ondes de cisaillement. Après quelques longueurs d'onde de propagation, les amplitudes de déplacement diminuent considérablement et leur suivi devient difficile voir impossible. Ce problème affecte grandement la caractérisation des tissus biologiques. En outre, ces techniques ne donnent que l'information sur l'élasticité tandis que des études récentes montrent que certaines lésions bénignes ont les mêmes élasticités que des lésions malignes ce qui affecte la spécificité de ces techniques et motive la quantification de d'autres paramètres mécaniques (e.g.la viscosité). Le premier objectif de cette thèse consiste à optimiser la pression de radiation acoustique afin de rehausser l'amplitude des déplacements générés. Pour ce faire, un modèle analytique de prédiction de la fréquence de génération de la force de radiation a été développé. Une fois validé in vitro, ce modèle a servi pour la prédiction des fréquences optimales pour la génération de la force de radiation dans d'autres expérimentations in vitro et ex vivo sur des échantillons de tissu mammaire obtenus après mastectomie totale. Dans la continuité de ces travaux, un prototype de sonde ultrasonore conçu pour la génération d'un type spécifique d'ondes de cisaillement appelé ''onde de torsion'' a été développé. Le but est d'utiliser la force de radiation optimisée afin de générer des ondes de cisaillement adaptatives, et de monter leur utilité dans l'amélioration de l'amplitude des déplacements. Contrairement aux techniques élastographiques classiques, ce prototype permet la génération des ondes de cisaillement selon des parcours adaptatifs (e.g. circulaire, elliptique,…etc.) dépendamment de la forme de la lésion. L’optimisation des dépôts énergétiques induit une meilleure réponse mécanique du tissu et améliore le rapport signal sur bruit pour une meilleure quantification des paramètres viscoélastiques. Il est aussi question de consolider davantage les travaux de recherches antérieurs par un appui expérimental, et de prouver que ce type particulier d'onde de torsion peut mettre en résonance des structures. Ce phénomène de résonance des structures permet de rehausser davantage le contraste de déplacement entre les masses suspectes et le milieu environnant pour une meilleure détection. Enfin, dans le cadre de la quantification des paramètres viscoélastiques des tissus, la dernière étape consiste à développer un modèle inverse basé sur la propagation des ondes de cisaillement adaptatives pour l'estimation des paramètres viscoélastiques. L'estimation des paramètres viscoélastiques se fait via la résolution d'un problème inverse intégré dans un modèle numérique éléments finis. La robustesse de ce modèle a été étudiée afin de déterminer ces limites d'utilisation. Les résultats obtenus par ce modèle sont comparés à d'autres résultats (mêmes échantillons) obtenus par des méthodes de référence (e.g. Rheospectris) afin d'estimer la précision de la méthode développée. La quantification des paramètres mécaniques des lésions permet d'améliorer la sensibilité et la spécificité du diagnostic. La caractérisation tissulaire permet aussi une meilleure identification du type de lésion (malin ou bénin) ainsi que son évolution. Cette technique aide grandement les cliniciens dans le choix et la planification d'une prise en charge adaptée.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analog-to digital Converters (ADC) have an important impact on the overall performance of signal processing system. This research is to explore efficient techniques for the design of sigma-delta ADC,specially for multi-standard wireless tranceivers. In particular, the aim is to develop novel models and algorithms to address this problem and to implement software tools which are avle to assist the designer's decisions in the system-level exploration phase. To this end, this thesis presents a framework of techniques to design sigma-delta analog to digital converters.A2-2-2 reconfigurable sigma-delta modulator is proposed which can meet the design specifications of the three wireless communication standards namely GSM,WCDMA and WLAN. A sigma-delta modulator design tool is developed using the Graphical User Interface Development Environment (GUIDE) In MATLAB.Genetic Algorithm(GA) based search method is introduced to find the optimum value of the scaling coefficients and to maximize the dynamic range in a sigma-delta modulator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study aimed at the utlisation of microbial organisms for the production of good quality chitin and chitosan. The three strains used for the study were Lactobacillus plantarum, Lactobacililus brevis and Bacillus subtilis. These strains were selected on the basis of their acid producing ability to reduce the pH of the fermenting substrates to prevent spoilage and thus caused demineralisation of the shell. Besides, the proteolytic enzymes in these strains acted on proteinaceous covering of shrimp and thus caused deprotenisation of shrimp shell waste. Thus the two processes involved in chitin production can be affected to certain extent using bacterial fermentation of shrimp shell.Optimization parameters like fermentation period, quantity of inoculum, type of sugar, concentration of sugar etc. for fermentation with three different strains were studied. For these, parameters like pH, Total titrable acidity (TTA), changes in sugar concentration, changes in microbial count, sensory changes etc. were studied.Fermentation study with Lactobacillus plantarum was continued with 20% w/v jaggery broth for 15 days. The inoculum prepared yislded a cell concentration of approximately 108 CFU/ml. In the present study, lactic acid and dilute hydrochloric acid were used for initial pH adjustment because; without adjusting the initial pH, it took more than 5 hours for the lactic acid bacteria to convert glucose to lactic acid and during this delay spoilage occurred due to putrefying enzymes active at neutral or higher pH. During the fermentation study, pH first decreased in correspondence with increase in TTA values. This showed a clear indication of acid production by the strain. This trend continued till their proteolytic activity showed an increasing trend. When the available sugar source started depleting, proteolytic activity also decreased and pH increased. This was clearly reflected in the sensory evaluation results. Lactic acid treated samples showed greater extent of demineralization and deprotenisation at the end of fermentation study than hydrochloric acid treated samples. It can be due to the effect of strong hydrochloric acid on the initial microbial count, which directly affects the fermentation process. At the end of fermentation, about 76.5% of ash was removed in lactic acid treated samples and 71.8% in hydrochloric acid treated samples; 72.8% of proteins in lactic acid treated samples and 70.6% in hydrochloric acid treated samples.The residual protein and ash in the fermented residue were reduced to permissible limit by treatment with 0.8N HCI and 1M NaOH. Characteristics of chitin like chitin content, ash content, protein content, % of N- acetylation etc. were studied. Quality characteristics like viscosity, degree of deacetylation and molecular weight of chitosan prepared were also compared. The chitosan samples prepared from lactic acid treated showed high viscosity than HCI treated samples. But degree of deacetylation is more in HCI treated samples than lactic acid treated ones. Characteristics of protein liquor obtained like its biogenic composition, amino acid composition, total volatile base nitrogen, alpha amino nitrogen etc. also were studied to find out its suitability as animal feed supplement.Optimization of fermentation parameters for Lactobacillus brevis fermentation study was also conducted and parameters were standardized. Then detailed fermentation study was done in 20%wlv jaggery broth for 17 days. Also the effect of two different acid treatments (mild HCI and lactic acid) used for initial pH adjustment on chitin production were also studied. In this study also trend of changes in pH. changes in sugar concentration ,microbial count changes were similar to Lactobacillus plantarum studies. At the end of fermentation, residual protein in the samples were only 32.48% in HCI treated samples and 31.85% in lactic acid treated samples. The residual ash content was about 33.68% in HCI treated ones and 32.52% in lactic acid treated ones. The fermented residue was converted to chitin with good characteristics by treatment with 1.2MNaOH and 1NHCI.Characteristics of chitin samples prepared were studied and extent of Nacetylation was about 84% in HCI treated chitin and 85%in lactic acid treated ones assessed from FTIR spectrum. Chitosan was prepared from these samples by usual chemical method and its extent of solubility, degree of deacetylation, viscosity and molecular weight etc were studied. The values of viscosity and molecular weight of the samples prepared were comparatively less than the chitosan prepared by Lactobacillus plantarum fermentation. Characteristics of protein liquor obtained were analyzed to determine its quality and is suitability as animal feed supplement.Another strain used for the study was Bacillus subtilis and fermentation was carried out in 20%w/v jaggery broth for 15 days. It was found that Bacillus subtilis was more efficient than other Lactobacillus species for deprotenisation and demineralization. This was mainly due to the difference in the proteolytic nature of the strains. About 84% of protein and 72% of ash were removed at the end of fermentation. Considering the statistical significance (P

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Controlling the inorganic nitrogen by manipulating carbon / nitrogen ratio is a method gaining importance in aquaculture systems. Nitrogen control is induced by feeding bacteria with carbohydrates and through the subsequent uptake of nitrogen from the water for the synthesis of microbial proteins. The relationship between addition of carbohydrates, reduction of ammonium and the production of microbial protein depends on the microbial conversion coefficient. The carbon / nitrogen ratio in the microbial biomass is related to the carbon contents of the added material. The addition of carbonaceous substrate was found to reduce inorganic nitrogen in shrimp culture ponds and the resultant microbial proteins are taken up by shrimps. Thus, part of the feed protein is replaced and feeding costs are reduced in culture systems.The use of various locally available substrates for periphyton based aquaculture practices increases production and profitability .However, these techniques for extensive shrimp farming have not so far been evaluated. Moreover, an evaluation of artificial substrates together with carbohydrate source based farming system in reducing inorganic nitrogen production in culture systems has not yet been carried-out. Furthermore, variations in water and soil quality, periphyton production and shrimp production of the whole system have also not been determined so-far.This thesis starts with a general introduction , a brief review of the most relevant literature, results of various experiments and concludes with a summary (Chapter — 9). The chapters are organised conforming to the objectives of the present study. The major objectives of this thesis are, to improve the sustainability of shrimp farming by carbohydrate addition and periphyton substrate based shrimp production and to improve the nutrient utilisation in aquaculture systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Identification and Control of Non‐linear dynamical systems are challenging problems to the control engineers.The topic is equally relevant in communication,weather prediction ,bio medical systems and even in social systems,where nonlinearity is an integral part of the system behavior.Most of the real world systems are nonlinear in nature and wide applications are there for nonlinear system identification/modeling.The basic approach in analyzing the nonlinear systems is to build a model from known behavior manifest in the form of system output.The problem of modeling boils down to computing a suitably parameterized model,representing the process.The parameters of the model are adjusted to optimize a performanace function,based on error between the given process output and identified process/model output.While the linear system identification is well established with many classical approaches,most of those methods cannot be directly applied for nonlinear system identification.The problem becomes more complex if the system is completely unknown but only the output time series is available.Blind recognition problem is the direct consequence of such a situation.The thesis concentrates on such problems.Capability of Artificial Neural Networks to approximate many nonlinear input-output maps makes it predominantly suitable for building a function for the identification of nonlinear systems,where only the time series is available.The literature is rich with a variety of algorithms to train the Neural Network model.A comprehensive study of the computation of the model parameters,using the different algorithms and the comparison among them to choose the best technique is still a demanding requirement from practical system designers,which is not available in a concise form in the literature.The thesis is thus an attempt to develop and evaluate some of the well known algorithms and propose some new techniques,in the context of Blind recognition of nonlinear systems.It also attempts to establish the relative merits and demerits of the different approaches.comprehensiveness is achieved in utilizing the benefits of well known evaluation techniques from statistics. The study concludes by providing the results of implementation of the currently available and modified versions and newly introduced techniques for nonlinear blind system modeling followed by a comparison of their performance.It is expected that,such comprehensive study and the comparison process can be of great relevance in many fields including chemical,electrical,biological,financial and weather data analysis.Further the results reported would be of immense help for practical system designers and analysts in selecting the most appropriate method based on the goodness of the model for the particular context.