991 resultados para Binding agent


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multi-agent systems (MAS) advocate an agent-based approach to software engineering based on decomposing problems in terms of decentralized, autonomous agents that can engage in flexible, high-level interactions. This chapter introduces scalable fault tolerant agent grooming environment (SAGE), a second-generation Foundation for Intelligent Physical Agents (FIPA)-compliant multi-agent system developed at NIIT-Comtec, which provides an environment for creating distributed, intelligent, and autonomous entities that are encapsulated as agents. The chapter focuses on the highlight of SAGE, which is its decentralized fault-tolerant architecture that can be used to develop applications in a number of areas such as e-health, e-government, and e-science. In addition, SAGE architecture provides tools for runtime agent management, directory facilitation, monitoring, and editing messages exchange between agents. SAGE also provides a built-in mechanism to program agent behavior and their capabilities with the help of its autonomous agent architecture, which is the other major highlight of this chapter. The authors believe that the market for agent-based applications is growing rapidly, and SAGE can play a crucial role for future intelligent applications development. © 2007, IGI Global.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Dps (DNA-binding protein from starved cells) proteins from Mycobacterium smegmatis MsDps1 and MsDps2 are both DNA-binding proteins with some differences. While MsDps1 has two oligomeric states, with one of them responsible for DNA binding, MsDps2 has only one DNA-binding oligomeric state. Both the proteins however, show iron-binding activity. The MsDps1 protein has been shown previously to be induced under conditions of starvation and osmotic stress and is regulated by the extra cellular sigma factors sigma(H) and sigma(F). We show here, that the second Dps homologue in M. smegmatis, namely MsDps2, is purified in a DNA-bound form and exhibits nucleoid-like structures under the atomic force microscope. It appears that the N-terminal sequence of Dps2 plays a role in nucleoid formation. MsDps2, unlike MsDps1, does not show elevated expression in nutritionally starved or stationary phase conditions; rather its promoter is recognized by RNA polymerase containing sigma(A) or sigma(B), under in vitro conditions. We propose that due to the nucleoid-condensing ability, the expression of MsDps2 is tightly regulated inside the cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Adjuvants enhance or modify an immune response that is made to an antigen. An antagonist of the chemokine CCR4 receptor can display adjuvant-like properties by diminishing the ability of CD4+CD25+ regulatory T cells (Tregs) to down-regulate immune responses. Methodology: Here, we have used protein modelling to create a plausible chemokine receptor model with the aim of using virtual screening to identify potential small molecule chemokine antagonists. A combination of homology modelling and molecular docking was used to create a model of the CCR4 receptor in order to investigate potential lead compounds that display antagonistic properties. Three-dimensional structure-based virtual screening of the CCR4 receptor identified 116 small molecules that were calculated to have a high affinity for the receptor; these were tested experimentally for CCR4 antagonism. Fifteen of these small molecules were shown to inhibit specifically CCR4-mediated cellmigration, including that of CCR4(+) Tregs. Significance: Our CCR4 antagonists act as adjuvants augmenting human T cell proliferation in an in vitro immune response model and compound SP50 increases T cell and antibody responses in vivo when combined with vaccine antigens of Mycobacterium tuberculosis and Plasmodium yoelii in mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this communication, we report the spontaneous and reversible in vitro self-assembly of a polypeptide fragment derived from the C-terminal domain of Insulin-like Growth Factor Binding Protein (IGFBP-2) into soluble nanotubular structures several micrometres long via a mechanism involving inter-molecular disulfide bonds and exhibiting enhanced fluorescence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glycodelin A is a progesterone-induced endometrial glycoprotein which has been amply documented to play a role in down-modulation of the maternal immune response to fetal allo-antigens and to be indispensable for the maintenance and progression of pregnancy. Earlier studies from our laboratory have focused on the effect of glycodelin on T cells, key regulators of both the antibody and cell-mediated arms of the acquired immune system. Glycodelin-induced apoptosis inactivated T cells occurs through a caspase-dependant intrinsic mitochondrial pathway. Interestingly, glycodelin inhibited the proliferation of B cells but did not induce apoptosis. More recently, we have studied the effect of glycodelin on the cells of the innate immune system, namely monocytes and NK cells. We have found that glycodelin induced apoptosis in monocytic cells before their differentiation to macrophages, via the mitochondrial pathway, but did not affect their phagocytic capacity after differentiation. Glycodelin induced apoptosis in NK cells but this activity was independent of caspases. In conclusion, glycodelin is observed to affect many cells of the immune system, although the nature of the effect and signaling mechanisms involved in each cell type may be distinct.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Open reading frame (ORF) 2a of Sesbania mosaic virus (SeMV) codes for polyprotein 2a (Membrane anchor-protease-VPg-P10-P8). The C-terminal domain of SeMV polyprotein 2a was cloned, expressed and purified in order to functionally characterize it. The protein of size 8 kDa (P8) domain, like viral protein genome linked (VPg), was found to be natively unfolded and could bind to nucleic acids.Interestingly, P10-P8 but not P8 showed a novel Mg2+ dependent ATPase activity that was inhibited in the presence of poly A. In the absence of P8, the ATPase activity of the protein of size 10 kDa (P10) domain was reduced suggesting that the natively unfolded P8 domain influenced the P10 ATPase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antibodies specific for N6-(delta 2-isopentenyl) adenosine (i6A) were immobilized on Sepharose and this adsorbent (Sepharose-anti-i6A) was used to selectively isolate bacteriophage T4 tRNA precursors containing i6A/ms2i6A from an unfractionated population of 32P-labeled T4 RNAs. The results showed that antibodies to i6A selectively bound only those tRNA precursors containing i6A/ms2i6A. Binding of tRNA precursors by antibody and specificity of the binding was assessed by membrane binding using 32P-labeled tRNA precursor. Binding was highly specific for i6A/ms2i6A residues in the tRNA precursors. This binding can be used to separate modified from unmodified precursor RNAs and to study the biosynthetic pathways of tRNA precursors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single-stranded DNA-binding proteins (SSB) play an important role in most aspects of DNA metabolism including DNA replication, repair, and recombination. We report here the identification and characterization of SSB proteins of Mycobacterium smegmatis and Mycobacterium tuberculosis. Sequence comparison of M. smegmatis SSB revealed that it is homologous to M. tuberculosis SSB, except for a small spacer connecting the larger amino-terminal domain with the extreme carboxyl-terminal tail. The purified SSB proteins of mycobacteria bound single-stranded DNA with high affinity, and the association and dissociation constants were similar to that of the prototype SSB. The proteolytic signatures of free and bound forms of SSB proteins disclosed that DNA binding was associated with structural changes at the carboxyl-terminal domain. Significantly, SSB proteins from mycobacteria displayed high affinity for cognate RecA, whereas Escherichia coli SSB did not under comparable experimental conditions. Accordingly, SSB and RecA were coimmunoprecipitated from cell lysates, further supporting an interaction between these proteins in vivo. The carboxyl-terminal domain of M. smegmatis SSB, which is not essential for interaction with ssDNA, is the site of binding of its cognate RecA. These studies provide the first evidence for stable association of eubacterial SSB proteins with their cognate RecA, suggesting that these two proteins might function together during DNA repair and/or recombination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

3C resonances of carbonyl and methyl groups in amides are shifted down-field on interaction with alkali and alkaline earth metal salts. The magnitude of the shift depends on the ionic potential of the cation. Ions like Li+ bind to the amide carbonyl group both in neat amide solutions as well as in concentrated salt solutions in water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peptides Possessing antibiotic activity isolated from microbial sources have been the subject of intensive structural and biological investigation over the past two decades. Perhaps, the discovery and widespread use of penicillin, a molecule biosynthetically derived from a tripeptide precursor, as a strong antibacterial agent, has provided the necessary impetus for the detailed study of microbial peptides. While many of these peptides have not been used clinically, They show unique metal binding properties and often possess the ability to modify the electrical properties or ion permeabilities of artificial lipid membranes. Hence, these peptides have been used extensively to study transmembrane ion transport processes in model and natural systems like mitochondria, chloroplasts and plasma membranes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polarization of ligand fluorescence was used to study the binding of 4-methylumbelliferyl beta-D-galactopyranoside (MeUmb-Galp) to Abrus precatorious agglutinin. The binding of the fluorescent sugar to the lectin led to considerable polarization of the MeUmb-Galp fluorescence, which was also quenched by about 30% on binding to the lectin. The binding of the fluorescent sugar was carbohydrate-specific, as evidenced by inhibition of both fluorescence polarization and quenching when lectin was preincubated with lactose. The association constant as determined by fluorescence polarization is 1.42 x 10(4) M-1 at 25 degrees C and is in excellent agreement with those determined by fluorescence quenching (Ka = 1.51 x 10(4) M-1) and equilibrium dialysis (Ka = 1.62 x 10(4) M-1) at 25 degrees C. The numbers of binding sites as determined by fluorescence polarization, quenching and equilibrium dialysis agree very well with one another, n being equal to 2.0 +/- 0.05. The consistency between the association constant value determined by fluorescence polarization, quenching and equilibrium dialysis shows the validity of this approach to study lectin-sugar interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have used circular dichroism and structure-directed drugs to identify the role of structural features, wide and narrow grooves in particular, required for the cooperative polymerization, recognition of homologous sequences, and the formation of joint molecules promoted by recA protein. The path of cooperative polymerization of recA protein was deduced by its ability to cause quantitative displacement of distamycin from the narrow groove of duplex DNA. By contrast, methyl green bound to the wide groove was retained by the nucleoprotein filaments comprised of recA protein-DNA. Further, the mode of binding of these ligands and recA protein to DNA was confirmed by DNaseI digestion. More importantly, the formation of joint molecules was prevented by distamycin in the narrow groove while methyl green in the wide groove had no adverse effect. Intriguingly, distamycin interfered with the production of coaggregates between nucleoprotein filaments of recA protein-M13 ssDNA and naked linear M13 duplex DNA, but not with linear phi X174 duplex DNA. Thus, these data, in conjunction with molecular modeling, suggest that the narrow grooves of duplex DNA provide the fundamental framework required for the cooperative polymerization of recA protein and alignment of homologous sequences. These findings and their significance are discussed in relation to models of homologous pairing between two intertwined DNA molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of fructose 2,6-bisphosphate on the activation of purified swine kidney phosphofructokinase as a function of the concentration of fructose 6P, ATP and citrate was investigated. The purified enzyme was nearly completely inhibited in the presence of 2 mM ATP. The addition of 20 nM fructose 2,6-P2 reversed the inhibition and restored more than 80% of the activity. In the absence of fructose 2,6-P2 the reaction showed a sigmoidal dependence on fructose-6-phosphate. The addition of 10 nM fructose 2,6-bisphosphate decreased the K0.5 for fructose 6-phosphate from 3 mM to 0.4 mM in the presence of 1.5 mM ATP. These results clearly show that fructose 2,6-bisphosphate increases the affinity of the enzyme for fructose 6-phosphate and decreases the inhibitory effect of ATP. The extent of inhibition by citrate was also significantly decreased in the presence of fructose 2,6-phosphate. The influence of various effectors of phosphofructokinase on the binding of ATP and fructose 6-P to the enzyme was examined in gel filtration studies. It was found that kidney phosphofructokinase binds 5.6 moles of fructose 6-P per mole of enzyme, which corresponds to about one site per subunit of tetrameric enzyme. The KD for fructose 6-P was 13 microM and in the presence of 0.5 mM ATP it increased to 27 microM. The addition of 0.3 mM citrate also increased the KD for fructose 6-P to about 40 microM. AMP, 10 microM, decreased the KD to 5 microM and the addition of fructose 2,6-phosphate decreased the KD for fructose 6-P to 0.9 microM. The addition of these compounds did not effect the maximal amount of fructose 6-P bound to the enzyme, which indicated that the binding site for these compounds might be near, but was not identical to the fructose 6-P binding site. The enzyme bound a maximum of about 12.5 moles of ATP per mole, which corresponds to 3 moles per subunit. The KD of the site with the highest affinity for ATP was 4 microM, and it increased to 15 microM in the presence of fructose 2,6-bisphosphate. The addition of 50 microM fructose 1,6-bisphosphate increased the KD for ATP to 5.9 microM. AMP increased the KD to 5.9 microM whereas 0.3 mM citrate decreased the KD for ATP to about 2 microM.(ABSTRACT TRUNCATED AT 400 WORDS).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When E. coli single-stranded DNA binding protein (SSB) coats single-stranded DNA (ssDNA) in the presence of 1 mM MgCl2 it inhibits the subsequent binding of recA protein, whereas SSB binding to ssDNA in 12 mM MgCl2 promotes the binding of recA protein. These two conditions correspond respectively to those which produce 'smooth' and 'beaded' forms of ssDNA-SSB filaments. By gel filtration and immunoprecipitation we observed active nucleoprotein filaments of recA protein and SSB on ssDNA that contained on average 1 monomer of recA protein per 4 nucleotides and 1 monomer of SSB per 20-22 nucleotides. Filaments in such a mixture, when digested with micrococcal nuclease produced a regular repeating pattern, approximately every 70-80 nucleotides, that differed from the pattern observed when only recA protein was bound to the ssDNA. We conclude that the beaded ssDNA-SSB nucleoprotein filament readily binds recA protein and forms an intermediate that is active in the formation of joint molecules and can retain substantially all of the SSB that was originally bound.