988 resultados para Bay Psalm book
Resumo:
The distribution and abundance of ichthyoplankton was investigated from November 1979 to March 1980 along a transect from coastal to continental slope waters in Onslow Bay, North Carolina. Representatives of 66 families were collected; 24 of which were tropical families, a category that also includes families of typically oceanic and deep-sea fishes. Larvae of tropical species were collected in coastal and shelf waters, demonstrating the intrusion of Gulf Stream waters onto the continental shelf. From December through March, frontal waters that separated cold open-shelf surface waters from warm Gulf Stream surface waters were observed. Higher abundances of fish larvae were sometimes, but not consistently, associated with frontal waters. A great diversity of taxa was collected in offshore waters, and densities of larvae were low in coastal waters; low densities were attributed to gear selectivity rather than low larval abundance. Larvae of commercially and recreationally important estuarine-dependent species, especially Leiostomus xanthus and Micropogonias undulatus, were dominant components of the ichthyoplankton. Representatives of the families Bothidae, Clupeidae, Gadidae, Gonostomatidae, Myctophidae, Ophidiidae, and Sparidae were also important components of the ichthyoplankton. Larvae of species representing two strikingly different life history types-mesopelagic and estuarine-dependent frequently cooccurred.(PDF file contains 32 pages.)
Resumo:
The objective of this study was to describe the physical and ichthyological changes occurring seasonally and annually in the south San Francisco Bay, based on the results of 2,561 otter trawl and water samples obtained between February 1973 and June 1982. Temperature varied predictably among seasons in a pattern that varied little between years. Salinity also underwent predictable seasonal changes but the pattern varied substantially between years. The most abundant species of fish were northern anchovy (Engraulis mordax), English sole (Parophrys vetulus), and shiner surfperch (Cymatogaster aggregata). The majority of the common fish species were most abundant during wet years and least abundant in dry years. Numeric diversity was highest during the spring and early summer, with no detectable interannual trends. Species composition changed extensively between seasons and between years, particularly years with extremely high or extremely low freshwater inflows. All the common species exhibited clustered spatial distributions. Such spatial clustering could affect the interpretation of data from estuarine sampling programs. Gobies (Family Gobiidae) were more abundant during flood tides than during ebb tides. English sole were significantly more abundant in shallower areas. Shiner surfperch showed significant differences in abundance between sample areas.(PDF file contains 28 pages.)
Resumo:
The combination of remotely sensed gappy Sea surface temperature (SST) images with the missing data filling DINEOF (data interpolating empirical orthogonal functions) technique, followed by a principal component analysis of the reconstructed data, has been used to identify the time evolution and the daily scale variability of the wintertime surface signal of the Iberian Poleward Current (IPC), or Navidad, during the 1981-2010 period. An exhaustive comparison with the existing bibliography, and the vertical temperature and salinity profiles related to its extremes over the Bay of Biscay area, show that the obtained time series accurately reflect the IPC-Navidad variability. Once a time series for the evolution of the SST signal of the current over the last decades is well established, this time series is used to propose a physical mechanism in relation to the variability of the IPC-Navidad, involving both atmospheric and oceanic variables. According to the proposed mechanism, an atmospheric circulation anomaly observed in both the 500 hPa and the surface levels generates atmospheric surface level pressure, wind-stress and heat-flux anomalies. In turn, those surface level atmospheric anomalies induce mutually coherent SST and sea level anomalies over the North Atlantic area, and locally, in the Bay of Biscay area. These anomalies, both locally over the Bay of Biscay area and over the North Atlantic, are in agreement with several mechanisms that have separately been related to the variability of the IPC-Navidad, i.e. the south-westerly winds, the joint effect of baroclinicity and relief (JEBAR) effect, the topographic beta effect and a weakened North Atlantic gyre.
Resumo:
Two high-frequency (HF) radar stations were installed on the coast of the south-eastern Bay of Biscay in 2009, providing high spatial and temporal resolution and large spatial coverage of currents in the area for the first time. This has made it possible to quantitatively assess the air-sea interaction patterns and timescales for the period 2009-2010. The analysis was conducted using the Barnett-Preisendorfer approach to canonical correlation analysis (CCA) of reanalysis surface winds and HF radar-derived surface currents. The CCA yields two canonical patterns: the first wind-current interaction pattern corresponds to the classical Ekman drift at the sea surface, whilst the second describes an anticyclonic/cyclonic surface circulation. The results obtained demonstrate that local winds play an important role in driving the upper water circulation. The wind-current interaction timescales are mainly related to diurnal breezes and synoptic variability. In particular, the breezes force diurnal currents in waters of the continental shelf and slope of the south-eastern Bay. It is concluded that the breezes may force diurnal currents over considerably wider areas than that covered by the HF radar, considering that the northern and southern continental shelves of the Bay exhibit stronger diurnal than annual wind amplitudes.
Resumo:
222 p. : il.
Resumo:
In this essay, three lines of evidence are developed that sturgeons in the Chesapeake Bay and elsewhere are unusually sensitive to hypoxic conditions: 1. In comparison to other fishes, sturgeons have a limited behavioral and physiological capacity to respond to hypoxia. Basal metabolism, growth, and consumption are quite sensitive to changes in oxygen level, which may indicate a relatively poor ability by sturgeons to oxyregulate. 2. During summertime, temperatures >20 C amplify the effect of hypoxia on sturgeons and other fishes due to a temperature*oxygen "squeeze" (Coutant 1987)- In bottom waters, this interaction results in substantial reduction of habitat; in dry years, nursery habitats in the Chesapeake Bay may be particularly reduced or even eliminated. 3. While evidence for population level effects by hypoxia are circumstantial, there are corresponding trends between the absence of Atlantic sturgeon reproduction in estuaries like the Chesapeake Bay where summertime hypoxia predominates on a system-wide scale. Also, the recent and dramatic recovery of shortnose sturgeon in the Hudson River (4-fold increase in abundance from 1980 to 1995) may have been stimulated by improvement of a large portion of the nursery habitat that was restored from hypoxia to normoxia during the period 1973-1978. (PDF contains 26 pages)