928 resultados para Bank business models
Resumo:
Bonnita es una empresa que nace en el año 2015 en el mes de marzo, su actividad económica se clasifica bajo el código CIIU 4751, comercio al por menor de productos textiles en establecimientos especializados, actualmente cuenta con un establecimiento de comercio ubicado en el barrio Kennedy de la ciudad de Bogotá, la inversión realizada para esta empresa se realizo en su totalidad con recursos propios, los resultados obtenidos hasta el momento han llenado la expectativas de los inversionistas y en el mes de agosto del presente año se abrirá una nueva tienda que mejorara las utilidades de la empresa. Las tiendas Bonnita enfocan todo su modelo de negocio a crear una experiencia de compra para su segmento objetivo que son las mujeres entre los 18 y 40 años de edad, de estrato 2 – 3 medio - bajo, por medio de estrategias de merchandising propias, que generan una actitud diferente y mas impulsiva dentro de la tienda, utilizando elementos sensoriales y psicológicos que el consumidor no percibe pero influye en su decisión y manera de comprar, haciendo de esta más rentable para las tiendas Bonnita. El segmento objetivo es grande en la ciudad de Bogotá, los competidores más representativos del mercado emplean modelos de negocio diferentes y no existe un líder en este segmento ya que muchas de estas empresas diversifican con respecto al género al que enfocan sus esfuerzos, Bonnita se dirige únicamente a la mujer, la rotación de sus productos es rápida debido al manejo de inventarios justo a tiempo, lo que permite ser competitivos frente al precio y innovación en los productos.
Resumo:
El presente trabajo constituye una investigación acerca del rol del modelo de negocio en el desarrollo de las organizaciones. Esto se hace, en particular, a través del estudio detallado de la compañía Southwest Airlines. Se identifican para esta empresa, entre otros asuntos, las relaciones entre los recursos y los elementos que ofrece su entorno. Esto, en lo fundamental, para determinar el funcionamiento que ha llevado a la organización a la creación de un modelo de negocio adecuado y exitoso y el poder del mismo para evolucionar en un medio cambiante y aprovechar las oportunidades que este brinda. El presente documento presenta el origen, el desarrollo y los resultados de un estudio realizado a la empresa Southwest Airlines. En este se presentan sus políticas y estructura de procesos en relación con sus clientes —tanto internos como externos Esta se evidencia, al final, en la eficiencia, el compromiso de los empleados y otra serie de elementos que contribuyen al buen funcionamiento de la organización. El aporte de esta investigación está,en generar resultados a partir de un estudio a uno de los modelos de negocio de la industria aérea, específicamente el modelo de bajo costo (low cost). El propósito del trabajo fue desarrollar un análisis de las variables que consolidan todo el proceso de gestión en esta herramienta (business model) para ofrecerle al lector las pautas para fomentar la creación de modelos de negocio en las organizaciones y brindar así una estructura que contribuya a alcanzar el éxito en el mismo.
Resumo:
This thesis introduce a new innovation methodology called IDEAS(R)EVOLUTION that was developed according to an on-going experimental research project started in 2007. This new approach to innovation has initial based on Design thinking for innovation theory and practice. The concept of design thinking for innovation has received much attention in recent years. This innovation approach has climbed from the design and designers knowledge field towards other knowledge areas, mainly business management and marketing. Human centered approach, radical collaboration, creativity and breakthrough thinking are the main founding principles of Design thinking that were adapted by those knowledge areas due to their assertively and fitness to the business context and market complexity evolution. Also Open innovation, User-centered innovation and later on Living Labs models emerge as answers to the market and consumers pressure and desire for new products, new services or new business models. Innovation became the principal business management focus and strategic orientation. All this changes had an impact also in the marketing theory. It is possible now to have better strategies, communications plans and continuous dialogue systems with the target audience, incorporating their insights and promoting them to the main dissemination ambassadors of our innovations in the market. Drawing upon data from five case studies, the empirical findings in this dissertation suggest that companies need to shift from Design thinking for innovation approach to an holistic, multidimensional and integrated innovation system. The innovation context it is complex, companies need deeper systems then the success formulas that “commercial “Design thinking for innovation “preaches”. They need to learn how to change their organization culture, how to empower their workforce and collaborators, how to incorporate external stakeholders in their innovation processes, hoe to measure and create key performance indicators throughout the innovation process to give them better decision making data, how to integrate meaning and purpose in their innovation philosophy. Finally they need to understand that the strategic innovation effort it is not a “one shot” story it is about creating a continuous flow of interaction and dialogue with their clients within a “value creation chain“ mindset; RESUMO: Metodologia de co-criação de um produto/marca cruzando Marketing, Design Thinking, Criativity and Management - IDEAS(R)EVOLUTION. Esta dissertação apresenta uma nova metodologia de inovação chamada IDEAS(R)EVOLUTION, que foi desenvolvida segundo um projecto de investigação experimental contínuo que teve o seu início em 2007. Esta nova abordagem baseou-se, inicialmente, na teoria e na práctica do Design thinking para a inovação. Actualmente o conceito do Design Thinking para a inovação “saiu” do dominio da area de conhecimento do Design e dos Designers, tendo despertado muito interesse noutras áreas como a Gestão e o Marketing. Uma abordagem centrada na Pessoa, a colaboração radical, a criatividade e o pensamento disruptivo são principios fundadores do movimento do Design thinking que têm sido adaptados por essas novas áreas de conhecimento devido assertividade e adaptabilidade ao contexto dos negócios e à evolução e complexidade do Mercado. Também os modelos de Inovação Aberta, a inovação centrada no utilizador e mais tarde os Living Labs, emergem como possiveis soluções para o Mercado e para a pressão e desejo dos consumidores para novos productos, serviços ou modelos de negócio. A inovação passou a ser o principal foco e orientação estratégica na Gestão. Todas estas mudanças também tiveram impacto na teoria do Marketing. Hoje é possivel criar melhores estratégias, planos de comunicação e sistemas continuos de diálogo com o público alvo, incorporando os seus insights e promovendo os consumidores como embaixadores na disseminação da inovação das empresas no Mercado Os resultados empiricos desta tese, construídos com a informação obtida nos cinco casos realizados, sugerem que as empresas precisam de se re-orientar do paradigma do Design thinking para a inovação, para um sistema de inovação mais holistico, multidimensional e integrado. O contexto da Inovação é complexo, por isso as empresas precisam de sistemas mais profundos e não apenas de “fórmulas comerciais” como o Design thinking para a inovação advoga. As Empresas precisam de aprender como mudar a sua cultura organizacional, como capacitar sua força de trabalho e colaboradores, como incorporar os públicos externos no processo de inovação, como medir o processo de inovação criando indicadores chave de performance e obter dados para um tomada de decisão mais informada, como integrar significado e propósito na sua filosofia de inovação. Por fim, precisam de perceber que uma estratégia de inovação não passa por ter “sucesso uma vez”, mas sim por criar um fluxo contínuo de interação e diálogo com os seus clientes com uma mentalidade de “cadeia de criação de valor”
Resumo:
Every construction process (whatever buildings, machines, software, etc.) requires first to make a model of the artifact that is going to be built. This model should be based on a paradigm or meta-model, which defines the basic modeling elements: which real world concepts can be represented, which relationships can be established among them, and son on. There also should be a language to represent, manipulate and think about that model. Usually this model should be redefined at various levels of abstraction. So both, the paradigm an the language, must have abstraction capacity. In this paper I characterize the relationships that exist between these concepts: model, language and abstraction. I also analyze some historical models, like the relational model for databases, the imperative programming model and the object oriented model. Finally, I remark the need to teach that model-driven approach to students, and even go further to higher level models, like component models o business models.
Resumo:
A growing number of predicting corporate failure models has emerged since 60s. Economic and social consequences of business failure can be dramatic, thus it is not surprise that the issue has been of growing interest in academic research as well as in business context. The main purpose of this study is to compare the predictive ability of five developed models based on three statistical techniques (Discriminant Analysis, Logit and Probit) and two models based on Artificial Intelligence (Neural Networks and Rough Sets). The five models were employed to a dataset of 420 non-bankrupt firms and 125 bankrupt firms belonging to the textile and clothing industry, over the period 2003–09. Results show that all the models performed well, with an overall correct classification level higher than 90%, and a type II error always less than 2%. The type I error increases as we move away from the year prior to failure. Our models contribute to the discussion of corporate financial distress causes. Moreover it can be used to assist decisions of creditors, investors and auditors. Additionally, this research can be of great contribution to devisers of national economic policies that aim to reduce industrial unemployment.
Resumo:
A growing number of predicting corporate failure models has emerged since 60s. Economic and social consequences of business failure can be dramatic, thus it is not surprise that the issue has been of growing interest in academic research as well as in business context. The main purpose of this study is to compare the predictive ability of five developed models based on three statistical techniques (Discriminant Analysis, Logit and Probit) and two models based on Artificial Intelligence (Neural Networks and Rough Sets). The five models were employed to a dataset of 420 non-bankrupt firms and 125 bankrupt firms belonging to the textile and clothing industry, over the period 2003–09. Results show that all the models performed well, with an overall correct classification level higher than 90%, and a type II error always less than 2%. The type I error increases as we move away from the year prior to failure. Our models contribute to the discussion of corporate financial distress causes. Moreover it can be used to assist decisions of creditors, investors and auditors. Additionally, this research can be of great contribution to devisers of national economic policies that aim to reduce industrial unemployment.
Resumo:
MSc. Dissertation presented at Faculdade de Ciências e Tecnologia of Universidade Nova de Lisboa to obtain the Master degree in Electrical and Computer Engineering
Resumo:
Time-inconsistency is an essential feature of many policy problems (Kydland and Prescott, 1977). This paper presents and compares three methods for computing Markov-perfect optimal policies in stochastic nonlinear business cycle models. The methods considered include value function iteration, generalized Euler-equations, and parameterized shadow prices. In the context of a business cycle model in which a scal authority chooses government spending and income taxation optimally, while lacking the ability to commit, we show that the solutions obtained using value function iteration and generalized Euler equations are somewhat more accurate than that obtained using parameterized shadow prices. Among these three methods, we show that value function iteration can be applied easily, even to environments that include a risk-sensitive scal authority and/or inequality constraints on government spending. We show that the risk-sensitive scal authority lowers government spending and income-taxation, reducing the disincentive households face to accumulate wealth.
Resumo:
We propose a method to evaluate cyclical models which does not require knowledge of the DGP and the exact empirical specification of the aggregate decision rules. We derive robust restrictions in a class of models; use some to identify structural shocks and others to evaluate the model or contrast sub-models. The approach has good size and excellent power properties, even in small samples. We show how to examine the validity of a class of models, sort out the relevance of certain frictions, evaluate the importance of an added feature, and indirectly estimate structural parameters.
Resumo:
This paper points out an empirical puzzle that arises when an RBC economy with a job matching function is used to model unemployment. The standard model can generate sufficiently large cyclical fluctuations in unemployment, or a sufficiently small response of unemployment to labor market policies, but it cannot do both. Variable search and separation, finite UI benefit duration, efficiency wages, and capital all fail to resolve this puzzle. However, both sticky wages and match-specific productivity shocks help the model reproduce the stylized facts: both make the firm's flow of surplus more procyclical, thus making hiring more procyclical too.
Resumo:
This paper theoretically and empirically documents a puzzle that arises when an RBC economy with a job matching function is used to model unemployment. The standard model can generate sufficiently large cyclical fluctuations in unemployment, or a sufficiently small response of unemployment to labor market policies, but it cannot do both. Variable search and separation, finite UI benefit duration, efficiency wages, and capital all fail to resolve this puzzle. However, either sticky wages or match-specific productivity shocks can improve the model's performance by making the firm's flow of surplus more procyclical, which makes hiring more procyclical too.
Resumo:
Supply chain finance, a financial product provided by the bank, has gained increasing attention and popularity over the last few years. Supply chain finance helps the corporate clients to optimize their financial flows along the supply chain. One characteristic of supply chain finance is that it aims to provide automated solutions. Therefore, the business process automation of supply chain finance is a very interesting and important topic for study. In this study, the business process automation of supply chain finance within the case organization, ING, is analysed. The purpose is to: (1) Identify the benefits to understand the importance to automate supply chain finance business process; (2) Find out the existing automation degree in the supply chain finance business process within the case bank to see what’s the situation now and how to improve in the future; (3) Discover the challenges in the further automation of supply chain finance business process. Firstly, the study finds out that supply chain finance business process automation can bring many benefits to the bank. Automation can improve productivity by using less time and human labour in the business process, and by providing scalable solutions. Automation can also improve quality of the service by reducing the human errors. Last but not least, automation can improve internal governance by providing enhanced visibility of the business process. Because of these potential benefits, many banks are actively seeking solutions to automate their supply chain finance business process. Then, the current automation situation with the case bank is analysed with the help of business process modelling. The supply chain finance business process within the case bank can be further divided into several sub processes: daily transaction, buyer sales and setup, supplier onboarding, contract management, customer services and supports, and contract termination. The study finds out that the daily transaction process is already a highly automated, which is carried out through the web-based trading platform. However, for other business the automation degree is relatively low. Among these business processes, supplier onboarding is most needed for further automation. Then, some solutions are also suggested to automate the supplier onboarding business process. In the end, the study also foresees some challenges during the further automation of supply chain finance business process in the case bank. Some suggestions are also given to deal with these challenges.
Resumo:
Esta disertación busca estudiar los mecanismos de transmisión que vinculan el comportamiento de agentes y firmas con las asimetrías presentes en los ciclos económicos. Para lograr esto, se construyeron tres modelos DSGE. El en primer capítulo, el supuesto de función cuadrática simétrica de ajuste de la inversión fue removido, y el modelo canónico RBC fue reformulado suponiendo que des-invertir es más costoso que invertir una unidad de capital físico. En el segundo capítulo, la contribución más importante de esta disertación es presentada: la construcción de una función de utilidad general que anida aversión a la pérdida, aversión al riesgo y formación de hábitos, por medio de una función de transición suave. La razón para hacerlo así es el hecho de que los individuos son aversos a la pérdidad en recesiones, y son aversos al riesgo en auges. En el tercer capítulo, las asimetrías en los ciclos económicos son analizadas junto con ajuste asimétrico en precios y salarios en un contexto neokeynesiano, con el fin de encontrar una explicación teórica de la bien documentada asimetría presente en la Curva de Phillips.
Resumo:
This paper examines two contrasting interpretations of how bank market concentration (Market Power Hypothesis) and banking relationships (Information Hypothesis) affect three sources of small firm liquidity (cash, lines of credit and trade credit). Supportive of a market power interpretation, we find that in a highly concentrated banking market, small firms hold less cash, have less access to lines of credit, and are more likely to be financially constrained, use greater amounts of more expensive trade credit and face higher penalties for trade credit late payment. We also find support for the information hypothesis: relationship banking improves small business liquidity, particularly in a concentrated banking market, thereby mitigating the adverse effects of bank market concentration derived from market power. Our results are robust to different cash, lines of credit and trade credit measures and to alternative empirical approaches.