858 resultados para Bank buildings
Resumo:
Building roofs play a very important role in the energy balance of buildings, especially in summer, when they are hit by a rather high solar irradiance. Depending on the type of finishing layer, roofs can absorb a great amount of heat and reach quite high temperatures on their outermost surface, which determines significant room overheating. However, the use of highly reflective cool materials can help to maintain low outer surface temperatures; this practice may improve indoor thermal comfort and reduce the cooling energy need during the hot season.This technology is currently well known and widely used in the USA, while receiving increasing attention in Europe. In order to investigate the effectiveness of cool roofs as a passive strategy for passive cooling in moderately hot climates, this paper presents the numerical results of a case study based on the dynamic thermal analysis of an existing office building in Catania (southern Italy, Mediterranean area). The results show how the application of a cool paint on the roof can enhance the thermal comfort of the occupants by reducing the operative temperatures of the rooms and to reduce the overall energy needs of the building for space heating and cooling.
Resumo:
In order to exploit the passive energy potential of the building envelope, it is important to provide a right combination of insulation thickness, heat capacity and night-time ventilation. In this paper, this issue will be tackled with reference to an historic building in Catania (Southern Italy). The building was built at the end of the XIX century, and its opaque envelope is entirely made with lava stones, which is typical of traditional architecture in this area. Starting from the current configuration of the building, many hypotheses for refurbishment are considered, combined with different strategies for passive cooling, such as night-time ventilation, use of shading devices and adoption of highly-reflective coatings. The effectiveness of each solution in terms of summer thermal comfort is evaluated through dynamic thermal simulations carried out with EnergyPlus. The results show the synergic effect of these strategies, as well as their individual impact, and allow to draw some general conclusions about the behaviour of heavyweight buildings under moderately hot weather conditions.
Resumo:
The intensification of the Urban Heat Island effect (UHI) is a problem that involves several fields, and new adequate solutions are required to mitigate its amplitude. The construction sector is strictly related with this phenomenon; in particular, roofs are the envelope components subject to the highest solar irradiance, hence any mitigation strategy should start from them and involve their appropriate design process. For this purpose, cool materials, i.e. materials which are able to reflect a large amount of solar radiation and avoid overheating of building surfaces have been deeply analyzed in the last years both at building and urban scales, showing their benefits especially in hot climates. However, green roofs also represent a possible way to cope with UHI, even if their design is not straightforward and requires taking into account many variables, strictly related with the local climatic conditions. In this context, the present paper proposes a comparison between cool roofs and green roofs for several Italian cities that are representative of different climatic conditions. In search of the most effective solution, the answers may be different depending on the perspective that leads the comparison, i.e. the need to reduce the energy consumption in buildings or the desire to minimize the contribution of the UHI effect.
Resumo:
Thermochromic windows are able to modulate their transmittance in both the visible and the near-infrared field as a function of their temperature. As a consequence, they allow to control the solar gains in summer, thus reducing the energy needs for space cooling. However, they may also yield a reduction in the daylight availability, which results in the energy consumption for indoor artificial lighting being increased. This paper investigates, by means of dynamic simulations, the application of thermochromic windows to an existing office building in terms of energy savings on an annual basis, while also focusing on the effects in terms of daylighting and thermal comfort. In particular, due attention is paid to daylight availability, described through illuminance maps and by the calculation of the daylight factor, which in several countries is subject thresholds. The study considers both a commercially available thermochromic pane and a series of theoretical thermochromic glazing. The expected performance is compared to static clear and reflective insulating glass units. The simulations are repeated in different climatic conditions, showing that the overall energy savings compared to clear glazing can range from around 5% for cold climates to around 20% in warm climates, while not compromising daylight availability. Moreover the role played by the transition temperature of the pane is examined, pointing out an optimal transition temperatures that is irrespective of the climatic conditions.
Resumo:
In this study, we examine the options market reaction to bank loan announcements for the population of US firms with traded options and loan announcements during 1996-2010. We get evidence on a significant options market reaction to bank loan announcements in terms of levels and changes in short-term implied volatility and its term structure, and observe significant decreases in short-term implied volatility, and significant increases in the slope of its term structure as a result of loan announcements. Our findings appear to be more pronounced for firms with more information asymmetry, lower credit ratings and loans with longer maturities and higher spreads. Evidence is consistent with loan announcements providing reassurance for investors in the short-term, however, over longer time horizons, the increase in the TSIV slope indicates that investors become increasingly unsure over the potential risks of loan repayment or uses of the proceeds.
Resumo:
This paper presents a study on reduction of energy consumption in buildings through behaviour change informed by wireless monitoring systems for energy, environmental conditions and people positions. A key part to the Wi-Be system is the ability to accurately attribute energy usage behaviour to individuals, so they can be targeted with specific feedback tailored to their preferences. The use of wireless technologies for indoor positioning was investigated to ascertain the difficulties in deployment and potential benefits. The research to date has demonstrated the effectiveness of highly disaggregated personal-level data for developing insights into people’s energy behaviour and identifying significant energy saving opportunities (up to 77% in specific areas). Behavioural research addressed social issues such as privacy, which could affect the deployment of the system. Radio-frequency research into less intrusive technologies indicates that received-signal-strength-indicator-based systems should be able to detect the presence of a human body, though further work would be needed in both social and engineering areas.
Resumo:
Buildings consume a large amount of energy, in both their use and production. Retrofitting aims to achieve a reduction in this energy consumption. However, there are concerns that retrofitting can cause negative impacts on the internal environment including poor thermal comfort and health issues. This research investigates the impact of retrofitting the façade of existing traditional buildings and the resulting impact on the indoor environment and occupant thermal comfort. A Case building located at the University of Reading has been monitored experimentally and modelled using IES software with monitored values as input conditions for the model. The proposed façade related retrofit options have been simulated and provide information on their effect on the indoor environment. The findings show a positive impact on the internal environment. The data shows a 16.2% improvement in thermal comfort after retrofit is simulated. This also achieved a 21.6% reduction in energy consumption from the existing building.
Resumo:
Based on a large dataset from eight Asian economies, we test the impact of post-crisis regulatory reforms on the performance of depository institutions in countries at different levels of financial development. We allow for technological heterogeneity and estimate a set of country-level stochastic cost frontiers followed by a deterministic bootstrapped meta-frontier to evaluate cost efficiency and cost technology. Our results support the view that liberalization policies have a positive impact on bank performance, while the reverse is true for prudential regulation policies. The removal of activities restrictions, bank privatization and foreign bank entry have a positive and significant impact on technological progress and cost efficiency. In contrast, prudential policies, which aim to protect the banking sector from excessive risk-taking, tend to adversely affect banks cost efficiency but not cost technology.
Resumo:
Following the 1997 crisis, banking sector reforms in Asia have been characterised by the emphasis on prudential regulation, associated with increased financial liberalisation. Using a panel data set of commercial banks from eight major Asian economies over the period 2001-2010, this study explores how the coexistence of liberalisation and prudential regulation affects banks’ cost characteristics. Given the presence of heterogeneity of technologies across countries, we use a stochastic frontier approach followed by the estimation of a deterministic meta-frontier to provide ‘true’ estimates of bank cost efficiency measures. Our results show that the liberalization of bank interest rates and the increase in foreign banks' presence have had a positive and significant impact on technological progress and cost efficiency. On the other hand, we find that prudential regulation might adversely affect bank cost performance. When designing an optimal regulatory framework, policy makers should combine policies which aim to foster financial stability without hindering financial intermediation.
Resumo:
Cool materials are characterized by having a high solar reflectance r – which is able to reduce heat gains during daytime - and a high thermal emissivity ε that enables them to dissipate the heat absorbed throughout the day during night. Despite the concept of cool roofs - i.e. the application of cool materials to roof surfaces - is well known in US since 1990s, many studies focused on their performance in both residential and commercial sectors under various climatic conditions for US countries, while only a few case studies are analyzed in EU countries. The present work aims at analyzing the thermal benefits due to their application to existing office buildings located in EU countries. Indeed, due to their weight in the existing buildings stock, as well as the very low rate of new buildings construction, the retrofit of office buildings is a topic of great concern worldwide. After an in-depth characterization of the existing buildings stock in the EU, the book gives an insight into roof energy balance due to different technological solutions, showing in which cases and to what extent cool roofs are preferable. A detailed description of the physical properties of cool materials and their availability on the market provides a solid background for the parametric analysis carried out by means of detailed numerical models that aims at evaluating cool roofs performance for various climates and office buildings configurations. With the help of dynamic simulations, the thermal behavior of representative office buildings of the existing EU buildings stock is assessed in terms of thermal comfort and energy needs for air conditioning. The results, which consider several variations of building features that may affect the resulting energy balance, show how cool roofs are an effective strategy for reducing overheating occurrences and thus improving thermal comfort in any climate. On the other hand, potential heating penalties due to a reduction in the incoming heat fluxes through the roof are taken into account, as well as the aging process of cool materials. Finally, an economic analysis of the best performing models shows the boundaries for their economic convenience.
Resumo:
The aim of this study was to evaluate the relationship between iron concentration in mature breast milk and characteristics of 136 donors of a Brazilian milk bank. Iron, vitamin A, zinc, and copper concentrations were assessed in human milk and maternal blood. Data were collected on maternal anthropometrics, obstetric, socioeconomic, demographic, and lifestyle factors. Iron, zinc, and copper in milk and zinc and copper in blood were detected by spectrophotometry. Vitamin A in milk and blood was determined by high-performance liquid chromatography. Hemoglobin was measured by electronic counting and serum iron and ferritin by colorimetry and chemoluminescence, respectively. Transferrin and ceruloplasmin were determined by nephelometry. According to multivariate linear regression analysis, iron in milk was positively associated with vitamin A in milk and with smoking but negatively associated with timing of breast milk donation (P < .001). These results indicate that iron concentration in milk of Brazilian donors may be influenced by nutritional factors and smoking. J Hum Lact. 26(2):175-179
Resumo:
Different shapes of asymmetric awnings for east and west windows are investigated mathematically as well as by measurement in a model. A box with 90 cm side and a 30x30 cm window was placed outdoor in overcast weather and the daylight factor was measured at the bottom of the box when the window was unshaded or equipped with different awnings. The average daylight factor in the box decreased from 4.6% for the unshaded window to 1.0% when a full awning was used. With “the best” asymmetrical awning, the average daylight factor was 80% larger than with the full awing. Using Dutch climate, calculation of the energy from direct radiation transmitted through the window during the cooling season showed that this was decreased from 100% as an annual mean for the unshaded window down 22% with a full awing. With “the best” asymmetrical awning, 26% of the energy was transmitted. Calculation of the indoor temperature in a hypothetical row house in Netherlands show that the use of either normal or asymmetrical awnings considerable decrease the indoor temperature during the hot season. Therefore the use of asymmetrical awnings for east or west faced windows considerable can increase the daylight in buildings, with almost no change in overheating, compared to if traditional awnings are used.
Resumo:
The aim of the study is to develop a model for the energy balance of buildings that includes the effect from the radiation properties of interior and exterior surfaces of the building envelope. As a first step we have used ice arenas as case study objects to investigate the importance of interior low emissivity surfaces. Measurements have been done in two ice arenas in the north part of Sweden, one with lower and one with higher ceiling emissivity. The results show that the low emissivity ceiling gives a much lower radiation temperature interacting with the ice under similar conditions. The dynamic modelling of the roof in ice arenas shows a similar dependence of the roof-to-ice heat flux and the ceiling emissivity.A second part of the study focus on how to realise paints with very low thermal emissivity to be used on interior building surfaces.
Resumo:
Research on solar combisystems for the Nordic and Baltic countries have been carriedout. The aim was to develop competitive solar combisystems which are attractive tobuyers and to educate experts in the solar heating field.The participants of the projects were the universities: Technical University of Denmark,Dalarna University, University of Oslo, Riga Technical University and Lund Institute ofTechnology, as well as the companies: Metro Therm A/S (Denmark), Velux A/S(Denmark), Solentek AB (Sweden), SolarNor (Norway) and SIA Grandeg (Latvia).The project included education, research, development and demonstration. Theactivities started in 2003 and were finished by the end of 2006. A number of Ph.D.studies in Denmark, Sweden and Latvia, and a post-doc. study in Norway were carriedout. Close cooperation between the researchers and the industry partners ensured thatthe results of the projects can be utilized. The industry partners will soon be able tobring the developed systems into the market.In Denmark and Norway the research and development focused on solarheating/natural gas systems, and in Sweden and Latvia the focus was on solarheating/pellet systems. Additionally, Lund Institute of Technology and University ofOslo studied solar collectors of various types being integrated into the building.
Resumo:
Purpose: The purposeof this thesis is to identify what factors influence international students in their choice of a bank.Literature review: A review of previous research about bank selection criteria related to students as well as a few examples of bank choice studies in the general population is presented. The review consists of studies from different years to illustrate criteria that reoccur in order to decrease the chances of overlooking important criteria that may be of importance for today‘s customers. Method: The thesis is based upon empirical data gathering through a non-probability sampling technique by distributing questionnaires through the Internet and in person. The data was analyzedwith the help of exploratory factor analysis (EFA). Conclusion: We found thatfive factors influence the choice of bank for international students. These factors are: cost of the bank services, use of technology, convenience, banks‘ reputation and marketing communication effectiveness. These factors could be helpful for banks who want to gain customers from international students, which are a relatively unexploited customer segment.