991 resultados para Bacterial artificial chromosome (BAC)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined the physical and chemical properties of a novel, fully-recirculated prawn and polychaete production system that incorporated polychaete-assisted sand filters (PASF). The aims were to assess and demonstrate the potential of this system for industrialisation, and to provide optimisations for wastewater treatment by PASF. Two successive seasons were studied at commercially-relevant scales in a prototype system constructed at the Bribie Island Research Centre in Southeast Queensland. The project produced over 5.4 tonnes of high quality black tiger prawns at rates up to 9.9 tonnes per hectare, with feed conversion of up to 1.1. Additionally, the project produced about 930 kg of high value polychaete biomass at rates up to 1.5 kg per square metre of PASF, with the worms feeding predominantly on waste nutrients. Importantly, this closed production system demonstrated rapid growth of healthy prawns at commercially relevant production levels, using methods that appear feasible for application at large scale. Deeper (23 cm) PASF beds provided similar but more reliable wastewater treatment efficacies compared with shallower (13 cm) beds, but did not demonstrate significantly greater polychaete productivity than (easier to harvest) shallow beds. The nutrient dynamics associated with seasonal and tidal operations of the system were studied in detail, providing technical and practical insights into how PASF could be optimised for the mitigation of nutrient discharge. The study also highlighted some of the other important advantages of this integrated system, including low sludge production, no water discharge during the culture phase, high ecosystem health, good prospects for biosecurity controls, and the sustainable production of a fishery-limited resource (polychaetes) that may be essential for the expansion of prawn farming industries throughout the world. Regarding nutrient discharge from this prototype mariculture system, when PASF was operating correctly it proved feasible to have no water (or nutrient) discharge during the entire prawn growing season. However, the final drain harvest and emptying of ponds that is necessary at the end of the prawn farming season released 58.4 kg ha-1 of nitrogen and 6 kg ha-1 of phosphorus (in Season 2). Whilst this is well below (i.e., one-third to one-half of) the current load-based licencing conditions for many prawn farms in Australia, the levels of nitrogen and chlorophyll a in the ponds remained higher than the more-stringent maximum limits at the Bribie Island study site. Zero-net-nutrient discharge was not achieved, but waste nutrients were low where 5.91 kg of nitrogen and 0.61 kg of phosphorus was discharged per tonne of prawns produced. This was from a system that deployed PASF at 14.4% of total ponded farm area which treated an average of 5.8% of pond water daily and did not use settlement ponds or other natural or artificial water remediation systems. Four supplemental appendices complement this research by studying several additional aspects that are central to the industrialisation of PASF. The first details an economic model and decision tool which allows potential users to interactively assess construction and operational variables of PASF at different scales. The second provides the qualitative results of a prawn maturation trial conducted collaboratively with the Commonwealth Scientific and Industrial Research Organisation (CSIRO) to assess dietary inclusions of PASF-produced worms. The third provides the reproductive results from industry-based assessments of prawn broodstock produced using PASF. And the fourth appendix provides detailed elemental and nutritional analyses of bacterial biofilm produced by PASF and assesses its potential to improve the growth of prawns in recirculated culture systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model is suggested for mammalian male determination based on interactions postulated to occur among an autosomal repressor gene, an X-linked male-determining gene termed Tdx, and multiple copies of certain DNA sequences on the Y chromosome that do not code for any protein. The repressor, synthesised in limited amounts, has higher affinity for the Y-linked sequences than for Tdx and its affinity for Tdx is greater than that of RNA polymerase. In XY cells the Y effectively binds all available repressor, permitting transcription of Tdx to occur. In XX cells, since competition from the Y-linked high-affinity sequences is absent, the repressor binds to Tdx and prevents transcription. As a result of this competition between Tdx and the Y-linked high-affinity sites for limiting concentrations of the autosomal repressor, the product of the Tdx gene (TDX) is synthesized in the male but not in the female. It is suggested that in determination of the male sex, the role of the Y chromosome is to serve as a sink for the Tdx repressor. The proposed interactions provide a plausible explanation for the genetic properties of several anomalies of sexual development in mouse, man, and other mammals. The model suggests that the postulated multiple, highaffinity sequences on the Y chromosome of the mouse are included among the DNA sequences referred to as the Sxr-Bkm sequences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surveying threatened and invasive species to obtain accurate population estimates is an important but challenging task that requires a considerable investment in time and resources. Estimates using existing ground-based monitoring techniques, such as camera traps and surveys performed on foot, are known to be resource intensive, potentially inaccurate and imprecise, and difficult to validate. Recent developments in unmanned aerial vehicles (UAV), artificial intelligence and miniaturized thermal imaging systems represent a new opportunity for wildlife experts to inexpensively survey relatively large areas. The system presented in this paper includes thermal image acquisition as well as a video processing pipeline to perform object detection, classification and tracking of wildlife in forest or open areas. The system is tested on thermal video data from ground based and test flight footage, and is found to be able to detect all the target wildlife located in the surveyed area. The system is flexible in that the user can readily define the types of objects to classify and the object characteristics that should be considered during classification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis focuses on how elevated CO2 and/or O3 affect the below-ground processes in semi-natural vegetation, with an emphasis on greenhouse gases, N cycling and microbial communities. Meadow mesocosms mimicking lowland hay meadows in Jokioinen, SW Finland, were enclosed in open-top chambers and exposed to ambient and elevated levels of O3 (40-50 ppb) and/or CO2 (+100 ppm) for three consecutive growing season, while chamberless plots were used as chamber controls. Chemical and microbiological analyses as well as laboratory incubations of the mesocosm soils under different treatments were used to study the effects of O3 and/or CO2. Artificially constructed mesocosms were also compared with natural meadows with regards to GHG fluxes and soil characteristics. In addition to research conducted at the ecosystem level (i.e. the mesocosm study), soil microbial communities were also examined in a pot experiment with monocultures of individual species. By comparing mesocosms with similar natural plant assemblage, it was possible to demonstrate that artificial mesocosms simulated natural habitats, even though some differences were found in the CH4 oxidation rate, soil mineral N, and total C and N concentrations in the soil. After three growing seasons of fumigations, the fluxes of N2O, CH4, and CO2 were decreased in the NF+O3 treatment, and the soil NH4+-N and mineral N concentrations were lower in the NF+O3 treatment than in the NF control treatment. The mesocosm soil microbial communities were affected negatively by the NF+O3 treatment, as the total, bacterial, actinobacterial, and fungal PLFA biomasses as well as the fungal:bacterial biomass ratio decreased under elevated O3. In the pot survey, O3 decreased the total, bacterial, actinobacterial, and mycorrhizal PLFA biomasses in the bulk soil and affected the microbial community structure in the rhizosphere of L. pratensis, whereas the bulk soil and rhizosphere of the other monoculture, A. capillaris, remained unaffected by O3. Elevated CO2 caused only minor and insignificant changes in the GHG fluxes, N cycling, and the microbial community structure. In the present study, the below-ground processes were modified after three years of moderate O3 enhancement. A tentative conclusion is that a decrease in N availability may have feedback effects on plant growth and competition and affect the N cycling of the whole meadow ecosystem. Ecosystem level changes occur slowly, and multiplication of the responses might be expected in the long run.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Staphylococcus aureus is one of the most important bacteria that cause disease in humans, and methicillin-resistant S. aureus (MRSA) has become the most commonly identified antibiotic-resistant pathogen in many parts of the world. MRSA rates have been stable for many years in the Nordic countries and the Netherlands with a low MRSA prevalence in Europe, but in the recent decades, MRSA rates have increased in those low-prevalence countries as well. MRSA has been established as a major hospital pathogen, but has also been found increasingly in long-term facilities (LTF) and in communities of persons with no connections to the health-care setting. In Finland, the annual number of MRSA isolates reported to the National Infectious Disease Register (NIDR) has constantly increased, especially outside the Helsinki metropolitan area. Molecular typing has revealed numerous outbreak strains of MRSA, some of which have previously been associated with community acquisition. In this work, data on MRSA cases notified to the NIDR and on MRSA strain types identified with pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and staphylococcal cassette chromosome mec (SCCmec) typing at the National Reference Laboratory (NRL) in Finland from 1997 to 2004 were analyzed. An increasing trend in MRSA incidence in Finland from 1997 to 2004 was shown. In addition, non-multi-drug resistant (NMDR) MRSA isolates, especially those resistant only to methicillin/oxacillin, showed an emerging trend. The predominant MRSA strains changed over time and place, but two internationally spread epidemic strains of MRSA, FIN-16 and FIN-21, were related to the increase detected most recently. Those strains were also one cause of the strikingly increasing invasive MRSA findings. The rise of MRSA strains with SCCmec types IV or V, possible community-acquired MRSA was also detected. With questionnaires, the diagnostic methods used for MRSA identification in Finnish microbiology laboratories and the number of MRSA screening specimens studied were reviewed. Surveys, which focused on the MRSA situation in long-term facilities in 2001 and on the background information of MRSA-positive persons in 2001-2003, were also carried out. The rates of MRSA and screening practices varied widely across geographic regions. Part of the NMDR MRSA strains could remain undetected in some laboratories because of insufficient diagnostic techniques used. The increasing proportion of elderly population carrying MRSA suggests that MRSA is an emerging problem in Finnish long-term facilities. Among the patients, 50% of the specimens were taken on a clinical basis, 43% on a screening basis after exposure to MRSA, 3% on a screening basis because of hospital contact abroad, and 4% for other reasons. In response to an outbreak of MRSA possessing a new genotype that occurred in a health care ward and in an associated nursing home of a small municipality in Northern Finland in autumn 2003, a point-prevalence survey was performed six months later. In the same study, the molecular epidemiology of MRSA and methicillin-sensitive S. aureus (MSSA) strains were also assessed, the results to the national strain collection compared, and the difficulties of MRSA screening with low-level oxacillin-resistant isolates encountered. The original MRSA outbreak in LTF, which consisted of isolates possessing a nationally new PFGE profile (FIN-22) and internationally rare MLST type (ST-27), was confined. Another previously unrecognized MRSA strain was found with additional screening, possibly indicating that current routine MRSA screening methods may be insufficiently sensitive for strains possessing low-level oxacillin resistance. Most of the MSSA strains found were genotypically related to the epidemic MRSA strains, but only a few of them had received the SCCmec element, and all those strains possessed the new SCCmec type V. In the second largest nursing home in Finland, the colonization of S. aureus and MRSA, and the role of screening sites along with broth enrichment culture on the sensitivity to detect S. aureus were studied. Combining the use of enrichment broth and perineal swabbing, in addition to nostrils and skin lesions swabbing, may be an alternative for throat swabs in the nursing home setting, especially when residents are uncooperative. Finally, in order to evaluate adequate phenotypic and genotypic methods needed for reliable laboratory diagnostics of MRSA, oxacillin disk diffusion and MIC tests to the cefoxitin disk diffusion method at both +35°C and +30°C, both with or without an addition of sodium chloride (NaCl) to the Müller Hinton test medium, and in-house PCR to two commercial molecular methods (the GenoType® MRSA test and the EVIGENETM MRSA Detection test) with different bacterial species in addition to S. aureus were compared. The cefoxitin disk diffusion method was superior to that of oxacillin disk diffusion and to the MIC tests in predicting mecA-mediated resistance in S. aureus when incubating at +35°C with or without the addition of NaCl to the test medium. Both the Geno Type® MRSA and EVIGENETM MRSA Detection tests are usable, accurate, cost-effective, and sufficiently fast methods for rapid MRSA confirmation from a pure culture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The significance of carbohydrate-protein interactions in many biological phenomena is now widely acknowledged and carbohydrate based pharmaceuticals are under intensive development. The interactions between monomeric carbohydrate ligands and their receptors are usually of low affinity. To overcome this limitation natural carbohydrate ligands are often organized as multivalent structures. Therefore, artificial carbohydrate pharmaceuticals should be constructed on the same concept, as multivalent carbohydrates or glycoclusters. Infections of specific host tissues by bacteria, viruses, and fungi are among the unfavorable disease processes for which suitably designed carbohydrate inhibitors represent worthy targets. The bacterium Helicobacter pylori colonizes more than half of all people worldwide, causing gastritis, gastric ulcer, and conferring a greater risk of stomach cancer. The present medication therapy for H. pylori includes the use of antibiotics, which is associated with increasing incidence of bacterial resistance to traditional antibiotics. Therefore, the need for an alternative treatment method is urgent. In this study, four novel synthesis procedures of multivalent glycoconjugates were created. Three different scaffolds representing linear (chondroitin oligomer), cyclic (γ-cyclodextrin), and globular (dendrimer) molecules were used. Multivalent conjugates were produced using the human milk type oligosaccharides LNDFH I (Lewis-b hexasaccharide), LNnT (Galβ1-4GlcNAcβ1-3Galβ1-4Glc), and GlcNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glc all representing analogues of the tissue binding epitopes for H. pylori. The first synthetic method included the reductive amination of scaffold molecules modified to express primary amine groups, and in the case of dendrimer direct amination to scaffold molecule presenting 64 primary amine groups. The second method described a direct procedure for amidation of glycosylamine modified oligosaccharides to scaffold molecules presenting carboxyl groups. The final two methods that were created both included an oxime-linkage on linkers of different length. All the new synthetic procedures synthesized had the advantage of using unmodified reducing sugars as starting material making it easy to synthesize glycoconjugates of different specificity. In addition, the binding activity of an array of neoglycolipids to H. pylori was studied. Consequently, two new neolacto-based structures, Glcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-Cer and GlcAβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-Cer, with binding activity toward H. pylori were discovered. Interestingly, N-methyl and N-ethyl amide modification of the GlcAβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-Cer glucuronic acid residue resulted in more effective H. pylori binding epitopes than the parent molecule.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The basis of this work was the identification of a genomic region on chromosome 7p14-p15 that strongly associated with asthma and high serum total immunoglobulin E in a Finnish founder population from Kainuu. Using a hierarchical genotyping approach the linkage region was narrowed down until an evolutionary collectively inherited 133-kb haplotype block was discovered. The results were confirmed in two independent data sets: Asthma families from Quebec and allergy families from North-Karelia. In all the three cohorts studied, single nucleotide polymorphisms tagging seven common gene variants (haplotypes) were identified. Over half of the asthma patients carried three evolutionary closely related susceptibility haplotypes as opposed to approximately one third of the healthy controls. The risk effects of the gene variants varied from 1.4 to 2.5. In the disease-associated region, there was one protein-coding gene named GPRA (G Protein-coupled Receptor for Asthma susceptibility also known as NPSR1) which displayed extensive alternative splicing. Only the two isoforms with distinct intracellular tail sequences, GPRA-A and -B, encoded a full-length G protein-coupled receptor with seven transmembrane regions. Using various techniques, we showed that GPRA is expressed in multiple mucosal surfaces including epithelial cells throughout the respiratory tract. GPRA-A has additional expression in respiratory smooth muscle cells. However, in bronchial biopsies with unknown haplotypes, GPRA-B was upregulated in airways of all patient samples in contrast to the lack of expression in controls. Further support for GPRA as a common mediator of inflammation was obtained from a mouse model of ovalbumin-induced inflammation, where metacholine-induced airway hyperresponsiveness correlated with elevated GPRA mRNA levels in the lung and increased GPRA immunostaining in pulmonary macrophages. A novel GPRA agonist, Neuropeptide S (NPS), stimulated phagocytosis of Esterichia coli bacteria in a mouse macrophage cell line indicating a role for GPRA in the removal of inhaled allergens. The suggested GPRA functions prompted us to study, whether GPRA haplotypes associate with respiratory distress syndrome (RDS) and bronchopulmonary dysplasia (BPD) in infants sharing clinical symptoms with asthma. According to the results, near-term RDS and asthma may also share the same susceptibility and protective GPRA haplotypes. As in asthma, GPRA-B isoform expression was induced in bronchial smooth muscle cells in RDS and BPD suggesting a role for GPRA in bronchial hyperresponsiveness. In conclusion, the results of the present study suggest that the dysregulation of the GPRA/NPS pathway may not only be limited to the individuals carrying the risk variants of the gene but is also involved in the regulation of immune functions of asthma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The product of the bglG gene of Escherichia coli was among the first bacterial antiterminators to be identified and characterized. Since the elucidation ten years ago of its role in the regulation of the bgl operon of E. coli,a large number of homologies have been discovered in both Gram-positive and Gram-negative bacteria. Often the homologues of BglG in other organisms are also involved in regulating β-glucoside utilization. Surprisingly, in many cases, they mediate antitermination to regulate a variety of other catabolic functions. Because of the high degree of conservation of the cis-acting regulatory elements, antiterminators from one organism can function in another. Generally the antiterminator protein itself is negatively regulated by phosphorylation by a component of the phosphotransferase system. This family of proteins thus represents a highly evolved regulatory system that is conserved across evolutionarily distant genuses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rare autosomal recessive disease congenital chloride diarrhea (CLD) is caused by mutations in the solute carrier family 26 member 3 (SLC26A3) gene on chromosome 7q22.3-31.1. SLC26A3 encodes for an apical epithelial chloride-bicarbonate exchanger, the intestinal loss of which leads to profuse chloride-rich diarrhea, and a tendency to hypochloremic and hypokalemic metabolic alkalosis. Although untreated CLD is usually lethal in early infancy, the development of salt substitution therapy with NaCl and KCl in the late 1960s made the disease treatable. While the salt substitution allows normal childhood growth and development in CLD, data on long-term outcome have remained unclarified. One of the world s highest incidences of CLD 1:30 000 to 1:40 000 occurs in Finland, and CLD is part of the Finnish disease heritage. We utilized a unique sample of Finnish patients to characterize the long-term outcome of CLD. Another purpose of this study was to search for novel manifestations of CLD based on the extraintestinal expression of the SLC26A3 gene. This study on a sample of 36 patients (ages 10-38) shows that the long-term outcome of treated CLD is favorable. In untreated or poorly treated cases, however, chronic contraction and metabolic imbalance may lead to renal injury and even to renal transplantation. Our results demonstrate a low-level expression of SLC26A3 in the human kidney. Although SLC26A3 may play a minor role in homeostasis, post-transplant recurrence of renal changes shows the unlikelihood of direct transporter modulation in the pathogenesis of CLD-related renal injury. Options to resolve the diarrheal symptoms of CLD have been limited. Unfortunately, our pilot trial indicated the inefficacy of oral butyrate as well. This study reveals novel manifestations of CLD. These include an increased risk for hyperuricemia, inguinal hernias, and probably for intestinal inflammation. The most notable finding of this study is CLD-associated male subfertility. This involves a low concentration of poorly motile spermatozoa with abnormal morphology, high seminal plasma chloride with a low pH, and a tendency to form spermatoceles. That SLC26A3 immunoexpression appeared at multiple sites of the male reproductive tract in part together with the main interacting proteins cystic fibrosis transmembrane conductance regulator (CFTR) and sodium-hydrogen exchanger 3 (NHE3) suggests novel sites for the cooperation of these proteins. As evidence of the cooperation, defects occurring in any of these transporters are associated with reduced male fertility. Together with a finding of high sweat chloride in CLD, this study provides novel data on extraintestinal actions of the SLC26A3 gene both in the male reproductive tract and in the sweat gland. These results provide the basis for future studies regarding the role of SLC26A3 in different tissues, especially in the male reproductive tract. Fortunately, normal spermatogenesis in CLD is likely to make artificial reproductive technologies to treat infertility and even make unassisted reproduction possible.