982 resultados para BIOLOGICAL INDICATORS
Resumo:
Root-lesion nematodes (RLNs) are found on 75% of grain farms in southern Queensland (QLD) and northern New South Wales (NSW) and are significant pests. This project confirmed that biological suppression of RLNs occurs in soils, examined what organisms are involved and how growers might enhance suppressiveness of soils. Field trials, and glasshouse and laboratory bioassays of soils from fields with contrasting management practices, showed suppressiveness is favoured with less tillage, more stubble and continuous intensive cropping, particularly in the top 15cm of soil. Through extensive surveys key organisms, Pasteuria bacteria, nematode-trapping fungi and predatory nematodes were isolated and identified as being present.
Resumo:
Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
Resumo:
The life history and host range of the lantana beetle, Alagoasa extrema, a potential biocontrol agent for Lantana spp. were investigated in a quarantine unit at the Alan Fletcher Research Station, Brisbane, Australia. Adults feed on leaves and females lay batches of about 17 eggs on the soil surface around the stems of plants. The eggs take 16 days to hatch and newly emerged larvae move up the stem to feed on young leaves. Larvae feed for about 23 days and there are three instars. There is a prepupal non-feeding stage that lasts about 12 days and the pupal stage, which occurs in a cocoon in the soil, lasts 16 days. Teneral adults remain in the cocoon for 3 days to harden prior to emergence. Males live for about 151 days while females live for about 127 days. The pre-oviposition period is 19 days. In no-choice larval feeding trials, nine plant species, representing three families, supported development to adult. Three species, Aloysia triphylla, Citharexylum spinosum and Pandorea pandorana were able to support at least two successive generations. These results confirm those reported in South Africa and suggest that A. extrema is not sufficiently specific for release in Australia. Furthermore, it is not recommended for release in any other country which is considering biological control of lantana.
Resumo:
Three species of Australian endemic catsharks (grey spotted catshark Asymbolus analis, orange spotted catshark A. rubiginosus and Australian sawtail shark Figaro boardmani) were collected from the trawl grounds of a highly seasonal commercial fishery off southern Queensland, Australia. Specimens were collected on the mid to outer continental shelf at depths between 78 and 168 m. This study provides the first information on the reproductive biology of these three poorly-known species. Mature female and male A. analis were observed from 455 mm total length (TL), mature female A. rubiginosus from 410 mm TL, mature male A. rubiginosus from 405 mm TL, mature female F. boardmani from 402 mm TL and mature male F. boardmani from 398 mm TL (although a lack of immature specimens precluded more accurate assessments of size at maturity). The reproductive mode of all species was confirmed as single oviparous (carrying only one egg case in each uterus at a time). Ovarian fecundity (the number of vitellogenic follicles) ranged from 7-20 in A. analis, 5-23 in A. rubiginosus and 9-13 in F. boardmani. Several indicators suggest that Asymbolus catsharks off southern Queensland are reproductively active year-round. The proportion of female A. rubiginosus carrying egg cases was highest in spring (60%), intermediate in autumn (50%) and lowest in winter (44%).
Resumo:
Trichogramma Westwood egg parasitoids alone generally fail to suppress heliothine pests when released in established cotton-growing regions. Factors hindering their success include indiscriminate use of detrimental insecticides, compensation for minimal pest larval hatch due to their activity via reduced larval cannibalism or mortality in general, singly laid heliothine eggs avoiding detection and asynchronous development benefiting host over parasitoid. Yet, despite these limitations, relatively large Trichogramma pretiosum Riley populations pervade and effectively suppress Helicoverpa (Hardwick) pests in Australian Bt (Bacillus thuringiensis Berliner)-transgenic cotton, Gossypium hirsutum L., crops, especially in the Ord River Irrigation Area (ORIA) of tropical northern Australia, where their impact on the potentially resistant pest species, Helicoverpa armigera (Hubner), is considered integral to the local insecticide resistance management (IRM) strategy for continued, sustainable Bt-transgenic cotton production. When devoid of conventional insecticides, relatively warm and stable conditions of the early dry season in winter grown ORIA Bt-transgenic cotton crops are conducive to Trichogramma proliferation and biological control appears effective. Further, there is considerable scope to improve Trichogramma's biological control potential, in both the ORIA and established cotton-growing regions, via habitat manipulation. It is proposed that Trichogramma may prove equally effective in developing agricultural regions of monsoonal northern Australia, and that environmental constraints on Trichogramma survival, and those of other natural enemies, require due consideration prior to their successful application in biological control programs.
Resumo:
Parthenium (Parthenium hysterophorus L.), a major weed causing economic, environmental, and human and animal health problems in Australia and several countries in Asia, Africa, and the Pacific, has been a target for biological control in Australia since the mid-1970s. Nine species of insects and two rust fungi have been introduced as biological control agents into Australia. These include Carmenta sp. nr ithacae, a root feeding agent from Mexico. The larvae of C. sp. nr ithacae bore through the stem-base into the root where they feed on the cortical tissue of the taproot. During 1998-2002, 2,816 larval-infested plants and 387 adults were released at 31 sites across Queensland, Australia. Evidence of field establishment was first observed in two of the release sites in central Queensland in 2004. Annual surveys at these sites and nonrelease sites during 2006-2011 showed wide variations in the incidence and abundance of C. sp. nr ithacae between years and sites. Surveys at three of the nine release sites in northern Queensland and 16 of the 22 release sites in central Queensland confirmed the field establishment of C. sp. nr ithacae in four release sites and four nonrelease sites, all in central Queensland. No field establishment was evident in the inland region or in northern Queensland. A CLIMEX model based on the native range distribution of C. sp. nr ithacae predicts that areas east of the dividing range along the coast are more suitable for field establishment than inland areas. Future efforts to redistribute this agent should be restricted to areas identified as climatically favorable by the CLIMEX model.
Resumo:
Parthenium hysterophorus L. is a weed of global significance that has become a major weed in Australia and many other parts of the world. A combined approach for the management of parthenium weed using biological control and plant suppression, was tested under field conditions over a two-year period in southern central Queensland. The six suppressive plant species, selected for their demonstrably suppressive ability in earlier glasshouse studies, worked synergistically with the biological control agents (Epiblema strenuana Walker, Zygogramma bicolorata Pallister, Listronotus setosipennis Hustache and Puccinia abrupta var. partheniicola) present in the field to reduce the growth (above ground biomass) of parthenium weed, by between 60–86% and 47–91%, in Years 1 and 2, respectively. The biomass of the suppressive plants was between 6% and 23% greater when biological control agents were present than when the biological control agents had been excluded. This shows that parthenium weed can be more effectively managed by combining the current biological control management strategy with selected sown suppressive plant species, both in Australia and elsewhere.
Resumo:
Cat's claw creeper, Dolichandra unguis-cati (L.) L.G. Lohman (syn: Macfadyena unguis-cati (L.) A.H. Gentry) (Bignoniaceae), a major environmental weed in Queensland and New South Wales, is a Weed of National Significance and an approved target for biological control. A leaf-mining jewel beetle, Hylaeogena jureceki Obenberger (Coleoptera: Buprestidae), first collected in 2002 from D. unguis-cati in Brazil and Argentina, was imported from South Africa into a quarantine facility in Brisbane in 2009 for host-specificity testing. H. jureceki adults chew holes in leaves and lay eggs on leaf margins and the emerging larvae mine within the leaves of D. unguis-cati. The generation time (egg to adult) of H. jureceki under quarantine conditions was 55.4 ± 0.2 days. Host-specificity trials conducted in Australia on 38 plant species from 11 families supplement and support South African studies which indicated that H. jureceki is highly host-specific and does not pose a risk to any non-target plant species in Australia. In no-choice tests, adults survived significantly longer (>32 weeks) on D. unguis-cati than on non-target test plant species (<3 weeks). Oviposition occurred on D. unguis-cati and one non-target test plant species, Citharexylum spinosum (Verbenaceae), but no larval development occurred on the latter species. In choice tests involving D. unguis-cati, C. spinosum and Avicennia marina (Avicenniaceae), feeding and oviposition were evident only on D. unguis-cati. The insect was approved for field release in Australia in May 2012.
Resumo:
A leaf-feeding geometrid, Chiasmia assimilis (Warren), was introduced into northern Queensland from South Africa in 2002 as a biological control agent for the invasive woody weed, prickly acacia, Acacia nilotica subsp. indica (Bentham) Brenan. The insect established in infestations in coastal areas between the townships of Ayr and Bowen where the larvae periodically cause extensive defoliation at some localities during summer and autumn. The impact of this herbivory on a number of plant parameters, including shoot length, basal stem diameter, root length, number of leaves, number of branches, and above and below ground biomass was investigated at one coastal site through an insect exclusion trial using potted seedlings and regular spray applications of a systemic insecticide to exclude the biological control agent. Half the seedlings, both sprayed and unsprayed, were placed beneath the prickly acacia canopy, the other half were placed in full sunlight. Larvae of C. assimilis were found on unsprayed seedlings in both situations. The effects of herbivory, however, were significant only for seedlings grown beneath the canopy. At the end of the five-month trial period, shoot length of these seedlings was reduced by 30%, basal stem diameter by 44%, root length by 15%, number of leaves by 97%, above ground biomass by 87%, and below ground biomass by 77% when compared to sprayed seedlings. Implications are that the insect, where established, may reduce seedling growth beneath existing canopies and in turn may help limit the formation of dense infestations. Crown Copyright (C) 2012 Published by Elsevier Inc. All rights reserved.
Resumo:
Biological control techniques attract increasing attention as one of the sustainable alternatives to pesticide use in integrated pest management programs. In order to develop sustainable pest management methods for arable crops based on entomopathogenic nematodes (EPN), their efficacy and persistence needed to be investigated, and an economically feasible delivery system had to be developed. In this study, first a survey of entomopathogens was conducted, and a system approach was tested, using the oilseed Brassica (OSB) growing system (OSB, spring wheat, and red clover) as a model. The system approach aimed at determining the potential of Steinernema feltiae (Filipjev) for the control of OSB pests, developing OSB rotation schemes that support EPN persistence, and investigating the impact of the selected biotic and abiotic factors on efficacy and persistence of EPN. This study employed abductive logic (which employs constant interplay between the theory and empirical observation), quantitative methods, and a case study on OSB. Laboratory and field experiments were carried out, and two types of pathogen surveys. A horizontal survey included OSB fields across Estonia, Germany, Poland, Sweden and the UK, while a vertical survey included sampling from two sets of differently managed experimental fields during three years. A new approach was introduced for measuring occurrence, where the prevalence and relative intensity of entomopathogens, biotic agents, and unidentified insect antagonists were determined. The effect of dose, timing, and the application method on S. feltiae in the control of pests in OSB, and the potential of a controlled release delivery system (CRS) were evaluated in the field. Studies on the impact of selected biotic and abiotc factors (Brassica plant, bait insects, developmental stages of Meligethes aeneus Fab., Isaria fumosorosea Wize (Ifr), and organic and synthetic fertilizers) on the efficacy of S. feltiae were conducted in the laboratory. Persistence of S. feltiae in the OSB growing system, and the effect of dose, timing, and the application method, was assessed in the field as part of the efficacy experiments. The impact of selected biotic and abiotic factors on S. feltiae persistence was assessed in laboratory experiments. The pathogen survey showed that the occurrence of entomopathogens is low in the OSB growing system, and that a management system causing less disturbance (ICM) to the soil increases the relative intensity of insect parasitic nematodes and other insect antagonists. A longer study period is required to show any possible impact of ICM on the relative intensity of entomopathogenic fungi, or on the prevalence of entomopathogens. Two different measures of the occurrence yielded different results: the relative intensity revealed the difference between the two different crop management methods, while prevalence did not. The highest efficacy of S. feltiae was achieved by using a low dose and targeting all stages of M. aeneus. When only the larval stage was targeted, the application method and dose had no significant effect. The CRS decreased the pest abundance significantly more than the surface application method. S. feltiae persisted in the OSB fields in Finland for several months, but did not survive the winter. The strain survived for 7 months when it was applied in autumn in Germany, but its populations declined rapidly after winter. The examined biotic and abiotic factors had variable impacts on S. feltiae efficacy and persistence. The two measures, prevalence and relative intensity of entomopathogens, gave valuable information for their use in biocontrol programs. The recommended biocontrol strategy for OSB growing in Finland is inundation and seasonal inoculation of EPN. The impact of some biotic and abiotic factors on S. feltiae efficacy and persistence is significant, and can be used to improve the efficacy of EPN. The CRS is a novel alternative for EPN application, and should also be considered for use on other crops. Keywords: Biological control, inundation, inoculation, conservation, formulation, slow release method, crop rotation, Entomopathogenic nematodes, Steinernema feltiae, oilseed rape pests, Meligethes aeneus, Phyllotreta spp., occurrence, prevalence, intensity, efficacy, persistence, field, Isaria fumosorosea, biotic factors, abiotic factors, interaction, impact, insect stages, integrated crop management, standard (conventional) crop management
Resumo:
TRFLP (terminal restriction fragment length polymorphism) was used to assess whether management practices that improved disease suppression and/or yield in a 4-year ginger field trial were related to changes in soil microbial community structure. Bacterial and fungal community profiles were defined by presence and abundance of terminal restriction fragments (TRFs), where each TRF represents one or more species. Results indicated inclusion of an organic amendment and minimum tillage increased the relative diversity of dominant fungal populations in a system dependant way. Inclusion of an organic amendment increased bacterial species richness in the pasture treatment. Redundancy analysis showed shifts in microbial community structure associated with different management practices and treatments grouped according to TRF abundance in relation to yield and disease incidence. ANOVA also indicated the abundance of certain TRFs was significantly affected by farming system management practices, and a number of these TRFs were also correlated with yield or disease suppression. Further analyses are required to determine whether identified TRFs can be used as general or soil-type specific bio-indicators of productivity (increased and decreased) and Pythium myriotylum suppressiveness.