930 resultados para B-Riesz Potential


Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE:
This study aimed to investigate antimicrobial treatment of an infected cochlear implant, undertaken in an attempt to salvage the infected device.

METHODS:
We used the broth microdilution method to assess the susceptibility of meticillin-sensitive Staphylococcus aureus isolate, cultured from an infected cochlear implant, to common antimicrobial agents as well as to novel agents such as tea tree oil. To better simulate in vivo conditions, where bacteria grow as microcolonies encased in glycocalyx, the bactericidal activity of selected antimicrobial agents against the isolate growing in biofilm were also compared.

RESULTS:
When grown planktonically, the S aureus isolate was susceptible to 17 of the 18 antimicrobials tested. However, when grown in biofilm, it was resistant to all conventional antimicrobials. In contrast, 5 per cent tea tree oil completely eradicated the biofilm following exposure for 1 hour.

CONCLUSION:
Treatment of infected cochlear implants with novel agents such as tea tree oil could significantly improve salvage outcome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grape-seed procyanidins (GSPE) modulate glucose homeostasis and it was suggested that GSPE may achieve this by enhancing the secretion of incretin hormones such as glucagon-like peptide-1 (GLP-1). Therefore, the aim of the present study is to examine in detail the effects of GSPE on intestinal endocrine cells (STC-1). GSPE was found to modulate plasma membrane potential in enteroendocrine cells, inducing depolarization at low concentrations (0.05 mg/L) and hyperpolarization at high concentrations (50 mg/L), and surprisingly this was also accompanied by suppressed GLP-1 secretion. Furthermore, how GSPE affects STC-1 cells under nutrient-stimulated conditions (i.e. glucose, linoleic acid and L-proline) was also explored, and we found that the higher GSPE concentration was effective in limiting membrane depolarization and reducing GLP-1 secretion. Next, it was also examined whether GSPE affected mitochondrial membrane potential, finding that this too is altered by GSPE, however this does not appear to explain the observed effects on plasma membrane potential and GLP-1 secretion. In conclusion, our results show that grape-seed procyanidins modulate cellular membrane potential and nutrient-induced enteroendocrine hormone secretion in STC-1 cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Inhibitors of intestinal alpha-glucosidases are used therapeutically to treat type 2 diabetes mellitus. Bacteria such as Actinoplanes sp. naturally produce potent alpha-glucosidase inhibitor compounds, including the most widely available drug acarbose. It is not known whether lactic acid bacteria (LAB) colonising the human gut possess inhibitory potential against glucosidases. Hence, the study was undertaken to screen LABs having inherent alpha- and beta-glucosidase inhibitory potential. Methods: This study isolated, screened, identified and extracted Lactobacillus strains (Lb1–15) from human infant faecal samples determining their inhibitory activity against intestinal maltase, sucrase, lactase and amylase. Lactobacillus reference strains (Ref1–7), a Gram positive control (Ctrl1) and two Gram negative controls (Ctrl2–3), were also analysed to compare activity. Results: Faecal isolates were identified by DNA sequencing, with the majority identified as unique strains of Lactobacillus plantarum. Some strains (L. plantarum, L. fermentum, L. casei and L. rhamnosus) had potent and broad spectrum inhibitory activities (up to 89 %; p < 0.001; 500 mg/ml wet weight) comparable to acarbose (up to 88 %; p < 0.001; 30 mg/ml). Inhibitory activity was concentration-dependent and was freely available in the supernatant, and was not present in other bacterial genera (Bifidobacterium bifidum and Escherichia coli or Salmonella typhimurium). Interestingly, the potency and spectrum of inhibitory activity across strains of a single species (L. plantarum) differed substantially. Some Lactobacillus extracts had broader spectrum activities than acarbose, effectively inhibiting beta-glucosidase activity (lactase) as well as alpha-glucosidase activities (maltase, sucrase and amylase). Anti-diabetic potential was indicated by the fact that oral gavage with a L. rhamnosus extract (1 g/kg) was able to reduce glucose excursions (Area under curve; 22 %; p < 0.05) in rats during a carbohydrate challenge (starch; 2 g/kg). Conclusion: These results definitively demonstrate that Lactobacillus strains present in the human gut have alpha- and beta-glucosidase inhibitory activities and can reduce blood glucose responses in vivo. Although the potential use of LAB such as Lactobacillus as a dietary supplement, medicinal food or biotherapeutic for diabetes is uncertain, such an approach might offer advantages over drug therapies in terms of broader spectrum activities and fewer unpleasant side effects. Further characterisation of this bioactivity is warranted, and chronic studies should be undertaken in appropriate animal models or diabetic subjects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This laboratory experiment systematically examines arsenic, iron, and phosphorus solubilities in soil suspensions as affected by addition of phosphorus fertilizer under different redox potential (Eh) and pH conditions. Under aerobic conditions, As solubility was low, however, under moderately reducing conditions (0, -150 mV), As solubility significantly increased due to dissolution of iron oxy-hydroxides. Upon reduction to -250 mV, As solubility was controlled by the formation of insoluble sulfides, and as a result soluble As contents significantly decreased. Soluble Fe concentration increased from moderate to highly anaerobic conditions; however, it decreased under aerobic conditions likely due to formation of insoluble oxy-hydroxides. A low pH, 5.5, led to increased soluble concentrations of As, Fe, and P. Finally, addition of P-fertilizers resulted in higher soluble P and As, even though the concentration of As did not increased after an addition rate of 600 mg P kg(-1) soil. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper evaluates the potential of gabions as roadside safety barriers. Gabions have the capacity to blend into natural landscape, suggesting that they could be used as a safety barrier for low-volume road in scenic environments. In fact, gabions have already been used for this purpose in Nepal, but the impact response was not evaluated. This paper reports on numerical and experimental investigations performed on a new gabion barrier prototype. To assess the potential use as a roadside barrier, the optimal gabion unit size and mass were investigated using multibody analysis and four sets of 1:4 scaled crash tests were carried out to study the local vehicle-barrier interaction. The barrier prototype was then finalised and subjected to a TB31 crash test according to the European EN1317 standard for N1 safety barriers. The test resulted in a failure due to the rollover of the vehicle and tearing of the gabion mesh yielding a large working width. It was found that although the system potentially has the necessary mass to contain a vehicle, the barrier front face does not have the necessary stiffness and strength to contain the gabion stone filling and hence redirect the vehicle. In the EN1317 test, the gabion barrier acted as a ramp for the impacting vehicle, causing rollover. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The simultaneous delivery of multiple cancer drugs in combination therapies to achieve optimal therapeutic effects in patients can be challenging. This study investigated whether co-encapsulation of the BH3-mimetic ABT-737 and the topoisomerase I inhibitor camptothecin (CPT) in PEGylated polymeric nanoparticles (NPs) was a viable strategy for overcoming their clinical limitations and to deliver both compounds at optimal ratios. We found that thrombocytopenia induced by exposure to ABT-737 was diminished through its encapsulation in NPs. Similarly, CPT-associated leukopenia and gastrointestinal toxicity were reduced compared with the administration of free CPT. In addition to the reduction of dose-limiting side effects, the co-encapsulation of both anticancer compounds in a single NP produced synergistic induction of apoptosis in both in vitro and in vivo colorectal cancer models. This strategy may widen the therapeutic window of these and other drugs and may enhance the clinical efficacy of synergistic drug combinations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radiotherapy is an important treatment option for many human cancers. Current research is investigating the use of molecular targeted drugs in order to improve responses to radiotherapy in various cancers. The cellular response to irradiation is driven by both direct DNA damage in the targeted cell and intercellular signalling leading to a broad range of bystander effects. This study aims to elucidate radiation-induced DNA damage response signalling in bystander cells and to identify potential molecular targets to modulate the radiation induced bystander response in a therapeutic setting. Stalled replication forks in T98G bystander cells were visualised via bromodeoxyuridine (BrdU) nuclear foci detection at sites of single stranded DNA. γH2AX co-localised with these BrdU foci. BRCA1 and FANCD2 foci formed in T98G bystander cells. Using ATR mutant F02-98 hTERT and ATM deficient GM05849 fibroblasts it could be shown that ATR but not ATM was required for the recruitment of FANCD2 to sites of replication associated DNA damage in bystander cells whereas BRCA1 bystander foci were ATM-dependent. Phospho-Chk1 foci formation was observed in T98G bystander cells. Clonogenic survival assays showed moderate radiosensitisation of directly irradiated cells by the Chk1 inhibitor UCN-01 but increased radioresistance of bystander cells. This study identifies BRCA1, FANCD2 and Chk1 as potential targets for the modulation of radiation response in bystander cells. It adds to our understanding of the key molecular events propagating out-of-field effects of radiation and provides a rationale for the development of novel molecular targeted drugs for radiotherapy optimisation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite advancement in breast cancer treatment, 30% of patients with early breast cancers experience relapse with distant metastasis. It is a challenge to identify patients at risk for relapse; therefore, the identification of markers and therapeutic targets for metastatic breast cancers is imperative. Here, we identified DP103 as a biomarker and metastasis-driving oncogene in human breast cancers and determined that DP103 elevates matrix metallopeptidase 9 (MMP9) levels, which are associated with metastasis and invasion through activation of NF-κB. In turn, NF-κB signaling positively activated DP103 expression. Furthermore, DP103 enhanced TGF-β-activated kinase-1 (TAK1) phosphorylation of NF-κB-activating IκB kinase 2 (IKK2), leading to increased NF-κB activity. Reduction of DP103 expression in invasive breast cancer cells reduced phosphorylation of IKK2, abrogated NF-κB-mediated MMP9 expression, and impeded metastasis in a murine xenograft model. In breast cancer patient tissues, elevated levels of DP103 correlated with enhanced MMP9, reduced overall survival, and reduced survival after relapse. Together, these data indicate that a positive DP103/NF-κB feedback loop promotes constitutive NF-κB activation in invasive breast cancers and activation of this pathway is linked to cancer progression and the acquisition of chemotherapy resistance. Furthermore, our results suggest that DP103 has potential as a therapeutic target for breast cancer treatment.