1000 resultados para Automatization, VI coding, calibration, hot wire anemometry
Resumo:
Accomplish high quality of final products in pharmaceutical industry is a challenge that requires the control and supervision of all the manufacturing steps. This request created the necessity of developing fast and accurate analytical methods. Near infrared spectroscopy together with chemometrics, fulfill this growing demand. The high speed providing relevant information and the versatility of its application to different types of samples lead these combined techniques as one of the most appropriated. This study is focused on the development of a calibration model able to determine amounts of API from industrial granulates using NIR, chemometrics and process spectra methodology.
Phenotypic switching in Pseudomonas brassicacearum involves GacS- and GacA-dependent Rsm small RNAs.
Resumo:
The plant-beneficial bacterium Pseudomonas brassicacearum forms phenotypic variants in vitro as well as in planta during root colonization under natural conditions. Transcriptome analysis of typical phenotypic variants using microarrays containing coding as well as noncoding DNA fragments showed differential expression of several genes relevant to secondary metabolism and of the small RNA (sRNA) genes rsmX, rsmY, and rsmZ. Naturally occurring mutations in the gacS-gacA system accounted for phenotypic switching, which was characterized by downregulation of antifungal secondary metabolites (2,4-diacetylphloroglucinol and cyanide), indoleacetate, exoenzymes (lipase and protease), and three different N-acyl-homoserine lactone molecules. Moreover, in addition to abrogating these biocontrol traits, gacS and gacA mutations resulted in reduced expression of the type VI secretion machinery, alginate biosynthesis, and biofilm formation. In a gacA mutant, the expression of rsmX was completely abolished, unlike that of rsmY and rsmZ. Overexpression of any of the three sRNAs in the gacA mutant overruled the pleiotropic changes and restored the wild-type phenotypes, suggesting functional redundancy of these sRNAs. In conclusion, our data show that phenotypic switching in P. brassicacearum results from mutations in the gacS-gacA system.
Resumo:
Fauré-Fremiet, Mme. Manuscrit(s) provenant d'elle
Resumo:
The calculation of elasticity parameters by sonic and ultra sonic wave propagation in saturated soils using Biot's theory needs the following variables : forpiation density and porosity (p, ø), compressional and shear wave velocities (Vp, Vs), fluid density, viscosity and compressibility (Pfi Ilfi Ki), matrix density and compressibility (p" K), The first four parameters can be determined in situ using logging probes. Because fluid and matrix characteristics are not modified during core extraction, they can be obtained through laboratory measurements. All parameters necessitate precise calibrations in various environments and for specific range of values encountered in soils. The slim diameter of boreholes in shallow geophysics and the high cost of petroleum equipment demand the use of specific probes, which usually only give qualitative results. The measurement 'of density is done with a gamma-gamma probe and the measurement of hydrogen index, in relation to porosity, by a neutron probe. The first step of this work has been carried out in synthetic formations in the laboratory using homogeneous media of known density and porosity. To establish borehole corrections different casings have been used. Finally a comparison between laboratory and in situ data in cored holes of known geometry and casing has been performed.
Resumo:
Gene expression changes may underlie much of phenotypic evolution. The development of high-throughput RNA sequencing protocols has opened the door to unprecedented large-scale and cross-species transcriptome comparisons by allowing accurate and sensitive assessments of transcript sequences and expression levels. Here, we review the initial wave of the new generation of comparative transcriptomic studies in mammals and vertebrate outgroup species in the context of earlier work. Together with various large-scale genomic and epigenomic data, these studies have unveiled commonalities and differences in the dynamics of gene expression evolution for various types of coding and non-coding genes across mammalian lineages, organs, developmental stages, chromosomes and sexes. They have also provided intriguing new clues to the regulatory basis and phenotypic implications of evolutionary gene expression changes.
Resumo:
Collection : Théâtre anglais. William Shakespeare
Resumo:
Relationships between porosity and hydraulic conductivity tend to be strongly scale- and site-dependent and are thus very difficult to establish. As a result, hydraulic conductivity distributions inferred from geophysically derived porosity models must be calibrated using some measurement of aquifer response. This type of calibration is potentially very valuable as it may allow for transport predictions within the considered hydrological unit at locations where only geophysical measurements are available, thus reducing the number of well tests required and thereby the costs of management and remediation. Here, we explore this concept through a series of numerical experiments. Considering the case of porosity characterization in saturated heterogeneous aquifers using crosshole ground-penetrating radar and borehole porosity log data, we use tracer test measurements to calibrate a relationship between porosity and hydraulic conductivity that allows the best prediction of the observed hydrological behavior. To examine the validity and effectiveness of the obtained relationship, we examine its performance at alternate locations not used in the calibration procedure. Our results indicate that this methodology allows us to obtain remarkably reliable hydrological predictions throughout the considered hydrological unit based on the geophysical data only. This was also found to be the case when significant uncertainty was considered in the underlying relationship between porosity and hydraulic conductivity.
Resumo:
OBJECTIVE: Mutations in the genes encoding the extracellular matrix protein collagen VI (ColVI) cause a spectrum of disorders with variable inheritance including Ullrich congenital muscular dystrophy, Bethlem myopathy, and intermediate phenotypes. We extensively characterized, at the clinical, cellular, and molecular levels, 49 patients with onset in the first 2 years of life to investigate genotype-phenotype correlations. METHODS: Patients were classified into 3 groups: early-severe (18%), moderate-progressive (53%), and mild (29%). ColVI secretion was analyzed in patient-derived skin fibroblasts. Chain-specific transcript levels were quantified by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), and mutation identification was performed by sequencing of complementary DNA. RESULTS: ColVI secretion was altered in all fibroblast cultures studied. We identified 56 mutations, mostly novel and private. Dominant de novo mutations were detected in 61% of the cases. Importantly, mutations causing premature termination codons (PTCs) or in-frame insertions strikingly destabilized the corresponding transcripts. Homozygous PTC-causing mutations in the triple helix domains led to the most severe phenotypes (ambulation never achieved), whereas dominant de novo in-frame exon skipping and glycine missense mutations were identified in patients of the moderate-progressive group (loss of ambulation). INTERPRETATION: This work emphasizes that the diagnosis of early onset ColVI myopathies is arduous and time-consuming, and demonstrates that quantitative RT-PCR is a helpful tool for the identification of some mutation-bearing genes. Moreover, the clinical classification proposed allowed genotype-phenotype relationships to be explored, and may be useful in the design of future clinical trials.
Resumo:
We present the results of a deep search for associated radio features in the vicinity of the microquasar Cygnus X-3. The motivation behind is to find out evidence for interaction between its relativistic jets and the surrounding interstellar medium, which could eventually allow us to perform calorimetry of the total energy released by this microquasar during its flaring lifetime. Remarkably, two radio sources with mJy emission level at centimeter wavelengths have been detected in excellent alignment with the position angle of the inner radio jets. We propose that these objects could be the hot spots where the relativitic outflow collides with the ambient gas in analogy with Fanaroff-Riley II radio galaxies. These candidate hot spots are within a few arc-minutes of Cygnus X-3 and, if physically related, the full linear extent of the jet would reach tens of parsecs. We discuss here the evidence currently available to support this hypothesis based on both archival data and our own observations.
Resumo:
Mutations in the BIGH3 gene on chromosome 5q31 cause four distinct autosomal dominant diseases of the human cornea: granular (Groenouw type I), Reis-Bücklers, lattice type I, and Avellino corneal dystrophies. All four diseases are characterized by both progressive accumulation of corneal deposits and eventual loss of vision. We have identified a specific recurrent missense mutation for each type of dystrophy, in 10 independently ascertained families. Genotype analysis with microsatellite markers surrounding the BIGH3 locus was performed in these 10 families and in 5 families reported previously. The affected haplotype could be determined in 10 of the 15 families and was different in each family. These data indicate that R555W, R124C, and R124H mutations occurred independently in several ethnic groups and that these mutations do not reflect a putative founder effect. Furthermore, this study confirms the specific importance of the R124 and R555 amino acids in the pathogenesis of autosomal dominant corneal dystrophies linked to 5q.