994 resultados para Atomic bomb


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the initial response of atomic nitrogen doped diamond like carbon (DLC) to endothelial cells in vitro. The introduction of nitrogen atoms/molecules to the diamond like carbon structures leads to an atomic structural change favorable to the attachment of human micro-vascular enclothelial cells. Whilst the semi-conductivity induced by nitrogen in DLC is thought to play a part, the increase in the inion-bonded N atoms and N-2 molecules in the atomic doped species (with the exclusion of the charged species) seems to contribute to the improved attachment of human microvascular endothelial cells. The increased endothelial attachment is associated with a lower work function and slightly higher water contact angle in the atomic doped films, where the heavy charged particles are excluded. The films used in the study were synthesized by the RF PECVD technique followed by post deposition doping with nitrogen, and afterwards the films were characterized by XPS, Raman spectroscopy, SIMS and Kelvin probe. The water contact angles were measured, and the counts of the adherent endothelial cells on the samples were carried out. This study is relevant and contributory to improving biocompatibility of surgical implants and prostheses.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hafnium oxide films have been deposited at 250 °C on silicon and germanium substrates by atomic layer deposition (ALD), using tetrakis-ethylmethylamino hafnium (TEMAH) and water vapour as precursors in a modified Oxford Instruments PECVD system. Self-limiting monolayer growth has been verified, characterised by a growth rate of 0.082 nm/ cycle. Layer uniformity is approximately within ±1% of the mean value. MOS capacitors have been fabricated by evaporating aluminium electrodes. CV analysis has been used to determine the bulk and interface properties of the HfO 2, and their dependence on pre-clean schedule, deposition conditions and post-deposition annealing. The dielectric constant of the HfO 2 is typically 18. On silicon, best results are obtained when the HfO 2 is deposited on a chemically oxidised hydrophilic surface. On germanium, best results are obtained when the substrate is nitrided before HfO 2 deposition, using an in-situ nitrogen plasma treatment. © Springer Science+Business Media, LLC 2007.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A current induces forces on atoms inside the conductor that carries it. It is now possible to compute these forces from scratch, and to perform dynamical simulations of the atomic motion under current. One reason for this interest is that current can be a destructive force—it can cause atoms to migrate, resulting in damage and in the eventual failure of the conductor. But one can also ask, can current be made to do useful work on atoms? In particular, can an atomic-scale motor be driven by electrical current as it can be by other mechanisms. For this to be possible, the current-induced forces on a suitable rotor must be non-conservative, so that net work can be done per revolution. Here we show that current-induced forces in atomic wires are not conservative and that they can be used, in principle, to drive an atomic-scale waterwheel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The two-photon resonances of atomic hydrogen (? = 2 × 205.1 nm), atomic nitrogen (? = 2 × 206.6 nm) and atomic oxygen (? = 2 × 225.6 nm) are investigated together with two selected transitions in krypton (? = 2×204.2 nm) and xenon (? = 2×225.5 nm). The natural lifetimes of the excited states, quenching coefficients for the most important collisions partners, and the relevant ratios of the two-photon excitation cross sections are measured. These data can be applied to provide a calibration for two-photon laser-induced fluorescence measurements based on comparisons with spectrally neighbouring noble gas resonances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The H+NO2 titration scheme for the determination of atomic hydrogen densities within a microwave excited flow tube reactor has been investigated by laser-induced fluorescence spectroscopy in the vacuum UV. Absolute hydrogen densities are determined on the basis of calibration by Rayleigh scattering from argon. The measurement is performed at a gas mixture containing 0.5% of D2 added to the main gas H2. The ground state density of the hydrogen atoms generated in the flow tube reactor was inferred from the fluorescence radiation of the spectrally shifted optically thin D-Lyman-a transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential of laser-induced fluorescence spectroscopy of atoms is reviewed with emphasis on the determination of absolute densities. Examples of experiments with single-photon and two-photon excitation are presented. Calibration methods applicable with the different schemes are discussed. A new method is presented that has the potential to allow absolute measurement in plasmas of elevated pressure where collisional depletion of the excited state is present.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The atmospheric pressure plasma jet is a capacitively coupled radio frequency discharge (13.56 MHz) running with a high helium flux (2m3 h-1) between concentric electrodes. Small amounts (0.5%) of admixed molecular oxygen do not disturb the homogeneous plasma discharge. The jet effluent leaving the discharge through the ring-shaped nozzle contains high concentrations of radicals at a low gas temperature—the key property for a variety of applications aiming at treatment of thermally sensitive surfaces. We report on absolute atomic oxygen density measurements by two-photon absorption laser-induced fluorescence (TALIF) spectroscopy in the jet effluent. Calibration is performed with the aid of a comparative TALIF measurement with xenon. An excitation scheme (different from the one earlier published) providing spectral matching of both the two-photon resonances and the fluorescence transitions is applied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The coplanar microscale atmospheric pressure plasma jet (µ-APPJ) is a capacitively coupled radio frequency discharge (13.56 MHz, ~15W rf power) designed for optimized optical diagnostic access. It is operated in a homogeneous glow mode with a noble gas flow (1.4 slm He) containing a small admixture of molecular oxygen (~0.5%). Ground state atomic oxygen densities in the effluent up to 2 × 1014 cm-3 are measured by two-photon absorption laser-induced fluorescence spectroscopy (TALIF) providing space resolved density maps. The quantitative calibration of the TALIF setup is performed by comparative measurements with xenon. A maximum of the atomic oxygen density is observed for 0.6% molecular oxygen admixture. Furthermore, an increase in the rf power up to about 15W (depending on gas flow and mixture) leads to an increase in the effluent’s atomic oxygen density, then reaching a constant level for higher powers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The micro atmospheric pressure plasma jet is an rf driven (13.56 MHz, ~20 W) capacitively coupled discharge producing a homogeneous plasma at ambient pressure when fed with a gas flow of helium (1.4 slm) containing small admixtures of oxygen (~0.5%). The design provides excellent optical access to the plasma core. Ground state atomic oxygen densities up to 3x1016 cm-3 are measured spatially resolved in the discharge core by absolutely calibrated two-photon absorption laser-induced fluorescence spectroscopy. The atomic oxygen density builds up over the first 8 mm of the discharge channel before saturating at a maximum level. The absolute value increases linearly with applied power.