977 resultados para Archaean seafloor
Resumo:
The barium distribution in sediments and pore fluids from five sites drilled in the Japan Sea have been used to illustrate the geochemical behavior of this element as it pertains paleoproductivity reconstructions, diagenetic remobilization, and barite precipitation in authigenic fronts. Sites where sulfate is depleted in the pore fluids also show high concentrations of dissolved barium, reflecting dissolution of biogenic barite. The high rate of sedimentation at Sites 798 and 799 results in a rapid sulfate depletion, which in turn leads to barite dissolution and reprecipitation in diagenetic fronts. The dissolved barium distribution at these sites has been used to quantify the rate of barite dissolution; we estimate a first-order rate constant for barite dissolution to be 2*10**-6/s at Site 799 and 2*10**-7/s at Site 798. Authigenic barite has been documented in sediments from Site 799 at 323 meters below seafloor by scanning electron microscopy and X-ray fluorescence analysis. These results indicate barite precipitation in a diagenetic front near the zone of sulfate depletion by upward migration of dissolved barium and downward diffusion of sulfate. Barite precipitation has also been inferred at Sites 796 and 798 based on sedimentary and dissolved barium distributions. Sulfate is not depleted in the pore fluids of Site 794. The lack of diagenetic remobilization of biogenic barium at this site preserves the high barium signal associated with the high-productivity sequences deposited during the late Miocene to Pliocene. Significantly, the organic carbon distribution does not indicate high accumulation rates during the periods of high opal and barium deposition. Instead, higher organic carbon accumulations are recorded in the Quaternary and middle Miocene sequences; intervals that are also characterized by deposition of siliciclastic turbidites. The presence of a terrestrial component in the organic carbon record renders barium a more useful indicator than organic carbon for paleoproductivity reconstructions in this marginal sea.
Resumo:
The distribution, type and quantity of marine litter accumulated on the bathyal and abyssal Mediterranean seafloor has been studied in the framework of the Spanish national projects PROMETEO and DOS MARES and the ESF-EuroDEEP project BIOFUN. Litter was collected with an otter trawl and Agassiz trawl while sampling for megafauna on the Blanes canyon and adjacent slope (Catalan margin, north-western Mediterranean) between 900 and 2700 m depth, and on the western, central and eastern Mediterranean basins at 1200, 2000 and 3000 m depth. All litter was sorted into 8 categories (hard plastic, soft plastic, glass, metal, clinker, fabric, longlines and fishing nets) and weighed. The distribution of litter was analysed in relation to depth, geographic area and natural (bathymetry, currents and rivers) and anthropogenic (population density and shipping routes) processes. The most abundant litter types were plastic, glass, metal and clinker. Lost or discarded fishing gear was also commonly found. On the Catalan margin, although the data indicated an accumulation of litter with increasing depth, mean weight was not significantly different between depths or between the open slope and the canyon. We propose that litter accumulated in the canyon, with high proportions of plastics, has predominantly a coastal origin, while litter collected on the open slope, dominated by heavy litter, is mostly ship-originated, especially at sites under major shipping routes. Along the trans-Mediterranean transect, although a higher amount of litter seemed to be found on the Western Mediterranean, differences of mean weight were not significant between the 3 geographic areas and the 3 depths. Here, the shallower sites, also closer to the coast, had a higher proportion of plastics than the deeper sites, which had a higher proportion of heavy litter and were often affected by shipping routes. The weight of litter was also compared to biomass of megafauna from the same samples. On the Blanes slope, the biomass of megafauna was significantly higher than the weight of litter between 900 and 2000 m depth and no significant differences were found at 2250 and 2700 m depth. Along the trans-Mediterranean transect, no significant differences were found between biomass and litter weight at all sites except in two sites: the Central Mediterranean at 1200 m depth, where biomass was higher than litter weight, and the Eastern Mediterranean at 1200 m depth, where litter weight was higher than biomass. The results are discussed in the framework of knowledge on marine litter accumulation, its potential impact on the habitat and fauna and the legislation addressing these issues.
Resumo:
Site 1256 of Ocean Drilling Program Leg 206 to the Guatemala Basin on the eastern flank of the East Pacific Rise yielded a near-complete, middle Miocene-Quaternary carbonate-rich section that provides an opportunity to study low-latitude biostratigraphic and paleoceanographic events. The sedimentary sequence in Hole 1256B has been zoned using calcareous nannofossils according to the biostratigraphic schemes by Martini of 1971 (modified by Martini and Müller in 1986) and Okada and Bukry of 1980. The nannofossil assemblage is characteristic of the low latitudes, with abundant Gephyrocapsa, Discoaster, and Sphenolithus, and is in general moderately to well preserved, depending on nannofossil abundance and the presence of diatoms. Age estimates for the first occurrence and last occurrence of Reticulofenestra rotaria were derived from biostratigraphy and magnetostratigraphy independently and assigned to 7.18 and 6.32 Ma, respectively. Linear sedimentation rates, calculated using 28 nannofossil datums and age estimates, are high in the middle Miocene, decrease from the late Miocene to the Pliocene, then increase upsection. The abrupt drop in carbonate mass accumulation rates during the early late Miocene is referred to as the "carbonate crash." This pattern reflects (1) the long-trend decrease of productivity as the site moves away from the upwelling system at the equatorial divergence as well as (2) fluctuation in the chemistry of the bottom waters associated with production of the North Atlantic Bottom Water and ventilation via the Panama Gateway. A basement age of 14.5 Ma was obtained by extrapolating the 39.1-m/m.y. rate in the middle Miocene to the basement at 250.7 meters below seafloor, and is consistent with the ~15-Ma age of the oceanic crust estimated from marine magnetic anomalies. Reworked nannofossils and lithologic changes were used to unravel postdepositional history, and three episodes were recognized, one of which in the latest Miocene can be widely correlated.
Resumo:
During Ocean Drilling Program Leg 185, we studied progressive changes of microfabrics of unconsolidated pelagic and hemipelagic sediments in Holes 1149A and 1149B in the northwest Pacific at 5818 m water depth. We paid particular attention to the early consolidation and diagenetic processes without tectonic deformation before the Pacific plate subduction at the Izu-Bonin Trench. Shape, size, and arrangement of pores were analyzed by scanning electron microscope (SEM) and were compared to anisotropy of magnetic susceptibility (AMS) data. The microfabric in Unit I is nondirectional fabric and is characterized by large peds of ~10-100 µm diameter, which are made up of clay platelets (mainly illite) and siliceous biogenic fragments. They are ovoid in shape and are mechanically packed by benthic animals. Porosity decreases from 0 to 60 meters below seafloor (mbsf) in Unit I (from 60% to 50%) in association with macropore size decreases. The microfabric of coarser grain particles other than clay in Unit II is characterized by horizontal preferred orientation because of depositional processes in Subunit IIA and burial compaction in Subunit IIB. On the other hand, small peds, which are probably made of fragments of fecal pellets and are composed of smectite and illite (3-30 µm diameter), are characterized by random orientation of clay platelets. The clay platelets in the small peds in Subunit IIA are in low-angle edge-to-face (EF) or face-to-face (FF) contact. These peds are electrostatically connected by long-chained clay platelets, which are interconnected by high-angle EF contact. Breaking of these long chains by overburden pressure diminishes the macropores, and the clay platelets in the peds become FF in contact, resulting in decreases in the volume of the micropores between clay platelets. Thus, porosity in Subunits IIA and IIB decreases remarkably downward. The AMS indicates random fabric and horizontal preferred orientation fabric in Units I and II, respectively. This result corresponds to that of SEM microfabric observations.In Subunit IIB, pressure solutions around radiolarian tests and clinoptilolite veins with normal displacement sense are seen distinctively below ~170 mbsf, probably in correspondence to the transition zone from opal-A to opal-CT.
Resumo:
Sulfide mineral major and trace element analyses were performed on more than 50 polished slabs representing mineralization from three seafloor hydrothermal massive sulfide deposits. Samples from the Bent Hill and ODP Mound massive sulfide deposits, both on the Juan de Fuca Ridge, can be contrasted with samples from the Trans-Atlantic Geotraverse (TAG) hydrothermal mound on the Mid-Atlantic Ridge. The massive sulfide at Bent Hill is predominantly pyrite and pyrrhotite, with increasing amounts of copper-bearing sulfide minerals at the base of the massive sulfide body and through the stockwork to an interval 200 m below seafloor that hosts high copper mineralization (Deep Copper Zone). ODP Mound contains much more abundant sphalerite and copper-bearing sulfides as compared to either Bent Hill or TAG, which are predominantly pyrite with much less abundant chalcopyrite. Copper-bearing sulfides from the Deep Copper Zone beneath Bent Hill and the lowest sampled interval of ODP Mound are petrographically and chemically similar, but distinct from copper-bearing minerals higher in either sequence.
Resumo:
Benthic oxygen and nitrogen fluxes were quantified within the years 2012 to 2014 at different time series sites in the southern North Sea with the benthic lander NuSObs (Nutrient and Suspension Observatory). In situ incubations of sediments, in situ bromide tracer studies, sampling of macrofauna and pore water investigations revealed considerable seasonal and spatial variations of oxygen and nitrogen fluxes. Seasonal and spatial variations of oxygen fluxes were observed between two different time series sites, covering different sediment types and/or different benthic macrofaunal communities. On a sediment type with a high content of fine grained particles (<63 µm) oxygen fluxes of -15.5 to -25.1 mmol/m**2/d (June 2012), -2.0 to -8.2 mmol/m**2/d (March 2013), -16.8 to -21.5 mmol/m**2/d (November 2013) and -6.1 mmol/m**2/d (March 2014) were measured. At the same site a highly diverse community of small species of benthic macrofauna was observed. On a sediment type with a low content of fine grained particles (<63 µm) high oxygen fluxes (-33.2 mmol/m**2/d August 2012; -47.2 to -55.1 mmol/m**2/d November 2013; -16.6 mmol/m**2/d March 2014) were observed. On this sediment type a less diverse benthic macrofaunal community, which was dominated by the large bodied suspension feeder Ensis directus, was observed. Average annual rain rates of organic carbon and organic nitrogen to the seafloor of 7.44 mol C/m**2/y and 1.34 mol N/m**2/y were estimated. On average 79% of the organic bound carbon and 95% of the organic bound nitrogen reaching the seafloor are recycled at the sediment-water interface.
Resumo:
During the Pleistocene glaciations, Arctic ice sheets on western Eurasia, Greenland and North America terminated at their continental margins. In contrast, the exposed continental shelves in the Beringian region of Siberia are thought to have been covered by a tundra landscape. Evidence of grounded ice on seafloor ridges and plateaux off the coast of the Beringian margin, at depths of up to 1,000 m, have generally been attributed to ice shelves or giant icebergs that spread oceanwards during glacial maxima. Here we identify marine glaciogenic landforms visible in seismic profiles and detailed bathymetric maps along the East Siberian continental margin. We interpret these features, which occur in present water depths of up to 1,200 m, as traces from grounding events of ice sheets and ice shelves. We conclude that the Siberian Shelf edge and parts of the Arctic Ocean were covered by ice sheets of about 1 km in thickness during several Pleistocene glaciations before the most recent glacial period, which must have had a significant influence on albedo and oceanic and atmospheric circulation.
Resumo:
Neodymium isotopes of fish debris from two sites on Demerara Rise, spanning ~4.5 m.y. of deposition from the early Cenomanian to just before ocean anoxic event 2 (OAE2) (Cenomanian-Turonian transition), suggest a circulation-controlled nutrient trap in intermediate waters of the western tropical North Atlantic that could explain continuous deposition of organic-rich black shales for as many as ~15 m.y. (Cenomanian-early Santonian). Unusually low Nd isotopic data (epsilon-Nd(t) ~-11 to ~-16) on Demerara Rise during the Cenomanian are confirmed, but the shallower site generally exhibits higher and more variable values. A scenario in which southwest-flowing Tethyan and/or North Atlantic waters overrode warm, saline Demerara bottom water explains the isotopic differences between sites and could create a dynamic nutrient trap controlled by circulation patterns in the absence of topographic barriers. Nutrient trapping, in turn, would explain the ~15 m.y. deposition of black shales through positive feedbacks between low oxygen and nutrient-rich bottom waters, efficient phosphate recycling, transport of nutrients to the surface, high productivity, and organic carbon export to the seafloor. This nutrient trap and the correlation seen previously between high Nd and organic carbon isotopic values during OAE2 on Demerara Rise suggest that physical oceanographic changes could be components of OAE2, one of the largest perturbations to the global carbon cycle in the past 150 m.y.
Resumo:
The giant pockmark REGAB (West African margin, 3160 m water depth) is an active methane-emitting cold seep ecosystem, where the energy derived from microbially mediated oxidation of methane supports high biomass and diversity of chemosynthetic communities. Bare sediments interspersed with heterogeneous chemosynthetic assemblages of mytilid mussels, vesicomyid clams and siboglinid tubeworms form a complex seep ecosystem. To better understand if benthic bacterial communities reflect the patchy distribution of chemosynthetic fauna, all major chemosynthetic habitats at REGAB were investigated using an interdisciplinary approach combining porewater geochemistry, in situ quantification of fluxes and consumption of methane, as well bacterial community fingerprinting. This study revealed that sediments populated by different fauna assemblages show distinct biogeochemical activities and are associated with distinct sediment bacterial communities. The methane consumption and methane effluxes ranged over one to two orders of magnitude across habitats, and reached highest values at the mussel habitat, which hosted a different bacterial community compared to the other habitats. Clam assemblages had a profound impact on the sediment geochemistry, but less so on the bacterial community structure. Moreover, all clam assemblages at REGAB were restricted to sediments characterized by complete methane consumption in the seafloor, and intermediate biogeochemical activity. Overall, variations in the sediment geochemistry were reflected in the distribution of both fauna and microbial communities; and were mostly determined by methane flux.
Resumo:
A distinctive low-carbonate interval interrupts the continuous limestone-marl alternation of the deep-marine Gorrondatxe section at the early Lutetian (middle Eocene) C21r/C21n Chron transition. The interval is characterized by increased abundance of turbidites and kaolinite, a 3 per mil decline in the bulk d13C record, a >1 per mil decline in benthic foraminiferal d13C followed by a gradual recovery, a distinct deterioration in foraminiferal preservation, high proportions of warm-water planktic foraminifera and opportunistic benthic foraminifera, and reduced trace fossil and benthic foraminiferal diversity, thus recording a significant environmental perturbation. The onset of the perturbation correlates with the C21r-H6 event recently defined in the Atlantic and Pacific oceans, which caused a 2°C warming of the seafloor and increased carbonate dissolution. The perturbation was likely caused by the input of 13C-depleted carbon into the ocean-atmosphere system, thus presenting many of the hallmarks of Paleogene hyperthermal deposits. However, from the available data it is not possible to conclusively state that the event was associated with extreme global warming. Based on our analysis, the perturbation lasted 226 kyr, from 47.44 to 47.214 Ma, and although this duration suggests that the triggering mechanism may have been similar to that of the Paleocene-Eocene Thermal Maximum (PETM), the magnitude of the carbon input and the subsequent environmental perturbation during the early Lutetian event were not as severe as in the PETM.
Resumo:
Synthetic seismograms are constructed from check shot-corrected velocity and density measurements collected during Ocean Drilling Program (ODP) Leg 180 at Sites 1109, 1115, and 1118. The synthetic seismograms facilitate direct correlation of a coincident multichannel seismic (MCS) profile with borehole data collected at the three sites. The MCS data and the synthetic seismograms correlate very well, with most major reflectors successfully reproduced in the synthetics. Our results enable a direct calibration of the MCS data in terms of age, paleoenvironment, and subsidence history. Seismic reflectors are time correlative within stratigraphic resolution but are often observed to result from different lithologies across strike. Our results facilitate the extrapolation of the sedimentation history into an unsampled section of Site 1118 and enable a full correlation between the three sites using all the data collected during ODP Leg 180. This study forms the foundation for regionalizing the site data to the northern margin of the Woodlark Basin, where the transition from continental rifting to seafloor spreading is taking place.
Resumo:
Eocene through Quaternary planktonic foraminifers were identified in cores recovered during Leg 126. Turbidites and volcanic ash beds are intercalated with hemipelagic sediments. Preservation of foraminifers is variable, ranging from excellent to poor and appears to have been affected by fluctuations in the carbonate compensation depth (CCD), depth of burial, changes in bottom water temperature, current velocity, sediment accumulation rates and seafloor topography. Preservation of foraminifers in Quaternary sediments is generally good, however, species abundance varies by a factor of I05-106 and reflects dilution by volcanogenic as well as terrigenous constituents and cannot be used for paleoceanographic reconstructions. In pre-Quaternary deposits planktonic foraminiferal tests frequently exhibit dissolution effects; biostratigraphic zonation and placement of zonal boundaries is difficult owing to hiatuses, dissolution facies, extraneously deposited sediments, and discontinuous coring. The Eocene foraminiferal faunas include specimens of the Globorotalia cerroazulensis plexus, markers of Zone P16 as well as Globigerina senni and Globigerinatheka spp., which became extinct before the end of the Eocene. Six hiatuses and/or dissolution periods, probably reflecting global cooling events and/or changes in oceanic circulation patterns were recorded at Site 792. Recrystallized, poorly preserved, possibly reworked Eocene species (Globigerina senni and Globigerapsis sp.) were recorded in sediments at Site 793.
Resumo:
On the basis of new bulk major and trace element (including REE) as well as Sm-Nd and Rb-Sr isotope data, used in conjunction with available geochronological data, a post-tectonic mafic igneous province and four groups of pre- to syntectonic amphibolite are distinguished in the polymetamorphic Maud Belt of western Dronning Maud Land, East Antarctica. Protoliths of the Group 1 amphibolites are interpreted as volcanic arc mafic intrusions with Archaean to Palaeoproterozoic Nd model ages and depletion in Nb and Ta. Isotopic and lithogeochemical characteristics of this earliest group of amphibolite indicate that the Maud Belt was once an active continental volcanic arc. The most likely position of this arc, for which a late Mesoproterozoic age (c. 1140 Ma) is indicated by available U-Pb single-zircon age data, was on the southeastern margin of the Kaapvaal-Grunehogna Craton. The protoliths of Group 2 amphibolites are attributed to the 1110 Ma Borgmassivet-Umkondo thermal event on the basis of comparable Nd model ages and trace element distributions. Group 3 amphibolite protoliths are characterized by mid-ocean ridge basalt-type REE patterns and low Th/Yb ratios, and they are related to Neoproterozoic extension. Group 4 amphibolite protoliths are distinguished by high Dy/Yb ratios and are attributed to a phase of syntectonic Pan-African magmatism as indicated by Rb-Sr isotope data.
Resumo:
Twenty-three core catcher samples from Site 1166 (Hole 1166A) in Prydz Bay were analyzed for their palynomorph content, with the aims of determining the ages of the sequence penetrated, providing information on the vegetation of the Antarctic continent at this time, and determining the environments under which deposition occurred. Dinocysts, pollen and spores, and foraminiferal test linings were recovered from most samples in the interval from 142.5 to 362.03 meters below seafloor (mbsf). The interval from 142.5 to 258.72 mbsf yielded palynomorphs indicative of a middle-late Eocene age, equivalent to the lower-middle Nothofagidites asperus Zone of the Gippsland Basin of southeastern Australia. The Prydz Bay sequence represents the first well-dated section of this age from East Antarctica. Dinocysts belonging to the widespread "Transantarctic Flora" give a more confident late Eocene age for the interval 142.5-220.5 mbsf. The uppermost two cores within this interval, namely, those from 142.5 and 148.36 mbsf, show significantly higher frequencies of dinocysts than the cores below and suggest that an open marine environment prevailed at the time of deposition. The spore and pollen component may reflect a vegetation akin to the modern rainforest scrubs of Tasmania and New Zealand. Below 267 mbsf, sparse microfloras, mainly of spores and pollen, are equated with the Phyllocladidites mawsonii Zone of southeastern Australia, which is of Turonian to possibly Santonian age. Fluvial to marginal marine environments of deposition are suggested. The parent vegetation from this interval is here described as "Austral Conifer Woodland." The same Late Cretaceous microflora occurs in two of the cores above the postulated unconformity at 267 mbsf. In the core at 249.42 mbsf, the Late Cretaceous spores and pollen are uncontaminated by any Tertiary forms, suggesting that a clast of this older material has been sampled; such a clast may reflect transport by ice during the Eocene. At 258.72 mbsf, Late Cretaceous spores and pollen appear to have been recycled into the Eocene sediments.
Resumo:
The concentrations of mercury (Hg) and other trace metals (Ni, Cu, Zn, Mo, Ba, Re, U) and the Hg isotopic composition were examined across a dramatic redox and productivity transition in a mid-Pleistocene Mediterranean Sea sapropel sequence. Characteristic trace metal enrichment in organic-rich layers was observed, with organic-rich sapropel layers ranging in Hg concentration from 314 to 488 ng/g (avg = 385), with an average enrichment in Hg by a factor of 5.9 compared to organic-poor background sediments, which range from 39 to 94 ng/g Hg (avg = 66). Comparison of seawater concentrations and sapropel accumulations of trace metals suggests that organic matter quantitatively delivers Hg to the seafloor. Near complete scavenging of Hg from the water column renders the sapropel Hg isotopic composition representative of mid-Pleistocene Mediterranean seawater. Sapropels have an average d202Hg value of -0.91 per mil ± 0.15 per mil (n = 5, 1 SD) and D199Hg value of 0.11 per mil ± 0.03 per mil (n = 5, 1 SD). Background sediments have an average d202Hg of -0.76 per mil ± 0.16 per mil (n = 5, 1 SD) and D199Hg of 0.05 per mil ± 0.01 per mil (n = 5, 1 SD), which is indistinguishable from the sapropel values. We suggest that the sapropel isotopic composition is most representative of the mid-Pleistocene Tyrrhenian Sea.