972 resultados para Antimicrobial activity
Resumo:
Despite recent advances in the treatment of some forms of leishmaniasis, the available drugs are still far from ideal due to inefficacy, parasite resistance, toxicity and cost. The wide-spectrum antimicrobial activity of 2-nitrovinylfuran compounds has been described, as has their activity against Trichomonas vaginalis and other protozoa. Thus, the aim of this study was to test the antileishmanial activities of six 2-nitrovinylfurans in vitro and in a murine model of leishmaniasis. Minimum parasiticide concentration (MPC) and 50% inhibitory concentration (IC50) values for these compounds against the promastigotes of Leishmania amazonensis, Leishmania infantum and Leishmania braziliensis were determined, as were the efficacies of two selected compounds in an experimental model of cutaneous leishmaniasis (CL) caused by L. amazonensis in BALB/c mice. All of the compounds were active against the promastigotes of the three Leishmania species tested. IC50 and MPC values were in the ranges of 0.8-4.7 µM and 1.7-32 µM, respectively. The compounds 2-bromo-5-(2-bromo-2-nitrovinyl)-furan (furvina) and 2-bromo-5-(2-methyl-2-nitrovinyl)-furan (UC245) also reduced lesion growth in vivo at a magnitude comparable to or higher than that achieved by amphotericin B treatment. The results demonstrate the potential of this class of compounds as antileishmanial agents and support the clinical testing of Dermofural(r) (a furvina-containing antifungal ointment) for the treatment of CL.
Resumo:
For enterococcal implant-associated infections, the optimal treatment regimen has not been defined. We investigated the activity of daptomycin, vancomycin, and gentamicin (and their combinations) against Enterococcus faecalis in vitro and in a foreign-body infection model. Antimicrobial activity was investigated by time-kill and growth-related heat production studies (microcalorimetry) as well as with a guinea pig model using subcutaneously implanted cages. Infection was established by percutaneous injection of E. faecalis in the cage. Antibiotic treatment for 4 days was started 3 h after infection. Cages were removed 5 days after end of treatment to determine the cure rate. The MIC, the minimal bactericidal concentration (MBC) in the logarithmic phase, and the MBC in the stationary phase were 1.25, 5, and >20 μg/ml for daptomycin, 1, >64, and >64 μg/ml for vancomycin, and 16, 32, and 4 μg/ml for gentamicin, respectively. In vitro, gentamicin at subinhibitory concentrations improved the activity against E. faecalis when combined with daptomycin or vancomycin in the logarithmic and stationary phases. In the animal model, daptomycin cured 25%, vancomycin 17%, and gentamicin 50% of infected cages. In combination with gentamicin, the cure rate for daptomycin increased to 55% and that of vancomycin increased to 33%. In conclusion, daptomycin was more active than vancomycin against adherent E. faecalis, and its activity was further improved by the addition of gentamicin. Despite a short duration of infection (3 h), the cure rates did not exceed 55%, highlighting the difficulty of eradicating E. faecalis from implants already in the early stage of implant-associated infection.
Resumo:
Propionibacterium acnes is an important cause of orthopedic-implant-associated infections, for which the optimal treatment has not yet been determined. We investigated the activity of rifampin, alone and in combination, against planktonic and biofilm P. acnes in vitro and in a foreign-body infection model. The MIC and the minimal bactericidal concentration (MBC) were 0.007 and 4 μg/ml for rifampin, 1 and 4 μg/ml for daptomycin, 1 and 8 μg/ml for vancomycin, 1 and 2 μg/ml for levofloxacin, 0.03 and 16 μg/ml for penicillin G, 0.125 and 512 μg/ml for clindamycin, and 0.25 and 32 μg/ml for ceftriaxone. The P. acnes minimal biofilm eradication concentration (MBEC) was 16 μg/ml for rifampin; 32 μg/ml for penicillin G; 64 μg/ml for daptomycin and ceftriaxone; and ≥128 μg/ml for levofloxacin, vancomycin, and clindamycin. In the animal model, implants were infected by injection of 10⁹ CFU P. acnes in cages. Antimicrobial activity on P. acnes was investigated in the cage fluid (planktonic form) and on explanted cages (biofilm form). The cure rates were 4% for daptomycin, 17% for vancomycin, 0% for levofloxacin, and 36% for rifampin. Rifampin cured 63% of the infected cages in combination with daptomycin, 46% with vancomycin, and 25% with levofloxacin. While all tested antimicrobials showed good activity against planktonic P. acnes, for eradication of biofilms, rifampin was needed. In combination with rifampin, daptomycin showed higher cure rates than with vancomycin in this foreign-body infection model.
Resumo:
The phytotoxic pathogenicity factor fusaric acid (FA) represses the production of 2,4-diacetylphloroglucinol (DAPG), a key factor in the antimicrobial activity of the biocontrol strain Pseudomonas fluorescens CHA0. FA production by 12 Fusarium oxysporum strains varied substantially. We measured the effect of FA production on expression of the phlACBDE biosynthetic operon of strain CHA0 in culture media and in the wheat rhizosphere by using a translational phlA'-'lacZ fusion. Only FA-producing F. oxysporum strains could suppress DAPG production in strain CHA0, and the FA concentration was strongly correlated with the degree of phlA repression. The repressing effect of FA on phlA'-'lacZ expression was abolished in a mutant that lacked the DAPG pathway-specific repressor PhlF. One FA-producing strain (798) and one nonproducing strain (242) of F. oxysporum were tested for their influence on phlA expression in CHA0 in the rhizosphere of wheat in a gnotobiotic system containing a sand and clay mineral-based artificial soil. F. oxysporum strain 798 (FA(+)) repressed phlA expression in CHA0 significantly, whereas strain 242 (FA(-)) did not. In the phlF mutant CHA638, phlA expression was not altered by the presence of either F. oxysporum strain 242 or 798. phlA expression levels were seven to eight times higher in strain CHA638 than in the wild-type CHA0, indicating that PhlF limits phlA expression in the wheat rhizosphere.
Resumo:
Työssä tutkittiin muurahais-, etikka- ja propionihapon sekä näiden johdannaisten teollisia sovelluskohteita. Työn tarkoituksena oli löytää muurahaishapolle tai sen johdannaisille potentiaalisia käyttökohteita etikka- ja propionihapon sekä näiden johdannaisten teollisista sovelluskohteista. Työssä on laaja kirjallisuuskatsaus, jossa käsitellään muurahais-, etikka- ja propionihapon kemiallisia ja fysikaalisia ominaisuuksia, ekologisia ja korroosiovaikutuksia sekä yleensä orgaanisten happojen antimikrobisia ominaisuuksia. Tämän lisäksi työssä esitellään tarkasteltavien happojen sekä happojohdannaisten markkinat teollisissa sovelluksissa Yhdysvalloissa, Länsi-Euroopassa ja Japanissa. Korvaavuuksien syventävän analyysin avulla pyrittiin löytämään ne sovelluskohteet muurahaishapolle tai sen johdannaisille, joissa ne voisivat olla hinnaltaan kilpailukykyisiä vastaavien etikka-ja propionihapposovellusten kanssa. Mahdollisen korvaavuuden rajaksi asetettiin5 000 tonnia sovelluskohdetta kohti. Kirjallisuustutkimuksen perusteella etikkahapon estereiden (asetaattiestereiden) käyttökohde liuottimien komponentteinavoisi olla potentiaalisin käyttökohde vastaaville muurahaishapon estereille (formiaattiestereille). Asetaattiestereitä on ennustettu käytettävän maailmalla 2 808 000 tonnia vuonna 2006. Niiden pääkäyttöalueet ovat liuottimina pintapäällysteissä kuten maaleissa, lakoissa sekä painomusteissa ja -väreissä. Toistaiseksi formiaattiestereitä on hyödynnetty vain muutamia satoja tonneja lähinnä lääketeollisuuden sovelluksissa välituotteena. Työssä tehtyjen alustavien laskelmien perusteella muurahaishapon esterit ovat hintatasoltaan kilpailukykyinen vaihtoehto vastaaville asetaattiestereille. Diplomityön kokeellisessa osassa etyyliformiaattia valmistettiin menestyksekkäästi laboratoriomittakaavassa. Toinen potentiaalinen uusi tuote on selluloosaformiaattikuitu (SF-kuitu). Selluloosa-asetaattikuitua käytettiin vuonna 2001 845 000 tonnia, josta 79 % kului savukefilttereiden valmistukseen. SF-kuitu on kirjallisuuden mukaan vaihtoehtoinen raaka-aine savukefilttereiden valmistukseen.
Resumo:
Sodium hypochlorite (NaOCl) is the most commonly used solution in root canal treatments, as it is a low-cost method that displays a very effective antimicrobial activity against microbiota of infected root canals. However, this solution can cause complications especially due to its cytotoxic features. When this solution is injected into the adjacent tissues, the patient usually experiences intense pain, and an urgent treatment should be implemented in order to prevent a long-term sequelae. This paper describes the clinical features of two patients that experienced an accidental extrusion of NaOCl after endodontic treatment of varying severity and with different treatments. Furthermore, it shows the long-term neurologic injuries that this type of accidents may cause and a treatment protocol for these situations will be suggested.
Resumo:
The interaction of mercury(II) with sulfathiazole has been analyzed. IR and NMR spectral studies suggest a coordination of Hg(II) with the Nthiazolic atom, unlike related Hg-sulfadrugs compounds. The complex was screened for its activity against Escherichia coli, showing an appreciable antimicrobial activity compared with the ligand.
Resumo:
This article shows that thiosemicarbazones, semicarbazones and their metal complexes can exhibit target selectivity along with a wide pharmacological profile. Complexes of thiosemicarbazones with cytotoxic or antitumoral activity are presented, some of which show activity against cisplatinum-resistant cells. The inhibition mechanism of the enzyme ribonucleoside diphosphate reductase (RDR), involved in DNA syntheses, by alpha(N)-heterocyclic thiosemicarbazones is discussed. The encouraging results of clinical trials with the RDR inhibitor 3-aminopyridine-2-carboxaldehyde thiosemicarbazone ("Triapine") against rapidly growing tumors are outlined. Examples are also given of thiosemicarbazones with antiviral and antimicrobial activity. The possible applications of semicarbazones as anticonvulsants with low toxicity and good therapeutic index are presented.
Resumo:
Pilocarpus riedelianus was studied in order to obtain compounds with activity against fungi and bacteria. The dichloromethane extract, the most active one, was chromatographed yielding hexane and dichloromethane fractions. Six known sesquiterpenes, alpha-calacorene, beta-calacorene, gamma-calacorene, cadalene, sesquichamaenol and 1-hydroxy-1,3,5-bisabolatrien-10-one were identified in the hexane fractions. The identification of these compound was done by NMR and GC/MS analyses. The hexane fraction from the dichloromethane extract showed activity against several fungi and bacteria.
Resumo:
This article provides an overview on the recent achievements to combat Gram-positive bacteria and the mechanisms related to antimicrobial activity and bacterial resistance. Selected synthetic methodologies to access structurally diverse bioactive compounds are presented in order to emphasize the most important substances currently developed to overcome multiresistant strains. The main properties of vancomycin and related glycopeptide antibiotics are also discussed as a background to understanding the design of new chemotherapeutic agents.
Resumo:
The investigation of extracts from six species of marine invertebrates yielded one new and several known natural products. Isoptilocaulin from the sponge Monanchora aff. arbuscula displayed antimicrobial activity at 1.3 mg/mL against an oxacillin-resistant strain of Staphylococcus aureus. Five inactive known dibromotyrosine derivatives, 2 6, were isolated from a new species of marine sponge, Aplysina sp. The sponges Petromica ciocalyptoides and Topsentia ophiraphidites yielded the known halistanol sulfate A (7) as an inhibitor of the antileishmanial target adenosine phosphoribosyl transferase. The ascidian Didemnum ligulum yielded asterubin (10) and the new N,N-dimethyl-O-methylethanolamine (11). The octocoral Carijoa riisei yielded the known 18-acetoxypregna-1,4,20-trien-3-one (12), which displayed cytotoxic activity against the cancer cell lines SF295, MDA-MB435, HCT8 and HL60.
Resumo:
The chemical composition of the essential oils from leaves and fruits of Triphasia trifolia was analyzed by GC-FID and GC-MS. The major constituents of oil obtained from leaves were sabinene (35.4%) and myrcene (34.1%), while the prevalent compounds in oil from fruits were sabinene (37.2%), beta-pinene (23.95) and gamma-terpinene (16.3%). Both oils showed moderate antimicrobial activity. The fruit decoction was also investigated leading to the isolation of the coumarins isopimpinelin, (R)-byakangelicin and (S)-mexoticin. From leaves were isolated the coumarins (R)-byakangelicin, aurapten, (S)-mexoticin, isosibiricin, isomerazin and coumurrayin and the flavonoid vitexin. All coumarins showed cholinesterase inhibition on TLC tests.
Resumo:
We report herein the synthesis of aryl beta-N-acetylglucosaminides containing azido, amino and acetamido groups at C-6 as potential antimicrobial agents. It was expected that these compounds could interfere with the biosynthesis and/or biotransformation of N-acetylglucosamine in fungi and bacteria. None of the compounds showed antimicrobial activity against bacteria (Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa), filamentous fungus (Aspergillus niger) and yeasts (Saccharomyces cerevisae, Candida albicans and Candida tropicallis), at the concentration of 1 mg/mL in agar diffusion assay.
Resumo:
Probiotic lactobacilli and bifidobacteria in the mouth – in vitro studies on saliva-mediated functions and acid production Probiotics are viable bacteria which, when used in adequate amounts, are beneficial to the health of the host. Although most often related to intestinal health, probiotic bacteria can be found also in the mouth after consumption of products that contain them. This study aimed at evaluating the oral effects of probiotic bacteria already in commercial use. In a series of in vitro studies, the oral colonisation potential of different probiotic bacteria, their acid production and potential saliva-mediated effects on oral microbial ecology were investigated. The latter included effects on the salivary pellicle, the adhesion of other bacteria, and the activation of the peroxidase system. Streptococcus mutans, Streptococcus gordonii, Aggregatibacter actinomycetemcomitans and Helicobacter pylori were used as bacterial indicators of the studied phenomena. There were significant differences between the probiotic strains in their colonisation potential. They all were acidogenic, although using different sugars and sugar alcohols. However, their acid production could be inhibited by the peroxidase system. Based on the results, it can be suggested that probiotic bacteria might influence the oral microbiota by different, partly species or strain-specific means. These include the inhibition of bacterial adhesion, modification of the enamel pellicle, antimicrobial activity, and activation of the peroxidase system. To conclude, probiotic strains differed from each other in their colonisation potential and other oral effects as evaluated in vitro. Both positive and potentially harmful effects were observed, but the significance of the perceived results needs to be further evaluated in vivo.
Resumo:
In this work, the effectiveness of four screening techniques (three techniques of the diffusion method and one microdilution broth method) were compared. Evaluated were the ethanolic and dichloromethanic extracts of Miconia rubiginosa (Melastomataceae) against six standard bacteria (ATCC). The results showed statistical disagreement among the three diffusion techniques. Among the diffusion techniques, the well technique displayed the best result. However the microdilution broth method demonstrated to be the most adequate method to evaluate the antibacterial activity of plant crude extracts and pure compounds when compared to the other methodologies.