898 resultados para Antimicrobial activity
Resumo:
Batch and continuous culture anaerobic fermentation systems, inoculated with human faeces, were utilised to investigate the antimicrobial actions of two probiotics, Lactobacillus plantartan 0407, combined with oligofructose and Bifidobacterium bifidum Bb12, combined with a mixture of oligofructose and xylo-oligosaccharides (50:50 w/w) against E coli and Campylobacter jejuni. In batch fermenters, both E coli and C jejuni were inhibited by the synbiotics, even when the culture pH was maintained at around neutral. In continuous culture C jejuni was inhibited but the synbiotic failed to inhibit E coli. Although no definitive answer in addressing the mechanisms underlying antimicrobial activity was derived, results suggested that acetate and lactate directly were conferring antagonistic action, rather than as a result of lowering culture pH. In the course of the study culturing and fluorescent in situ hybridisation (FISH) methodologies for the enumeration of bacterial populations were compared. Bifidobacterial populations were underestimated using plating techniques, suggesting the non-culturability of certain bifidobacterial species. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
One hundred and nine lactic acid bacterial strains (56 bifidobacteria-like and 53 lactobacilli-like) were isolated from faecal samples donated by healthy elderly individuals (>65 years old). Isolates were identified to species level by phenotypic analysis (by API) and by 16S rDNA sequencing. Eleven species of Lactobacillus and six species of Bifidobacterium were identified. The most frequently isolated lactobacillus was L. fermentum and the most frequently isolated bifidobacterium was closely related to B. infantis by 16S rDNA sequence alignment. The isolates were characterized for their antimicrobial activity against Clostridium difficile, enteropathogenic Escherichia coli (EPEC), verocytotoxigenic E. coli (VTEC) and Campylobacter jejuni. The lactobacilli displayed variations in their antimicrobial activity with few strains showing inhibitory activity against all pathogens. The bifidobacteria displayed higher levels of inhibitory activity against C. jejuni and Cl. difficile than against the E. coli strains. Keywords: Lactobacillus, Bifidobacterium, elderly, gastrointestinal microbiota, inhibition, Clostridium difficile, enteropathogenic Escherichia coli (EPEC), verocytotoxigenic E. coli (VTEC), Campylobacter jejuni.
Resumo:
Batch and continuous culture anaerobic fermentation systems, inoculated with human faeces, were utilised to investigate the antimicrobial actions of two probiotics, Lactobacillus plantartan 0407, combined with oligofructose and Bifidobacterium bifidum Bb12, combined with a mixture of oligofructose and xylo-oligosaccharides (50:50 w/w) against E coli and Campylobacter jejuni. In batch fermenters, both E coli and C jejuni were inhibited by the synbiotics, even when the culture pH was maintained at around neutral. In continuous culture C jejuni was inhibited but the synbiotic failed to inhibit E coli. Although no definitive answer in addressing the mechanisms underlying antimicrobial activity was derived, results suggested that acetate and lactate directly were conferring antagonistic action, rather than as a result of lowering culture pH. In the course of the study culturing and fluorescent in situ hybridisation (FISH) methodologies for the enumeration of bacterial populations were compared. Bifidobacterial populations were underestimated using plating techniques, suggesting the non-culturability of certain bifidobacterial species. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Fractionation of a MeOH/CH2Cl2 (1/1) extract of the aerial parts of Senecio erechtitoides led to the isolation of six compounds including the hitherto unknown N-phenethylamide derivative named N-(p-hydroxyphenethyl)pentacosanamide (1), and a kauranoid derivative named derivative named ent-7-oxo-16 alpha,17-dihydroxykauran-19-oic acid (2), as well as four known compounds, ent-Kaur-16-en-19-oic acid (3), ent-7 beta-hydroxykaur-16-en-19-oic acid (4), ent-7-oxokaur-16-en-19-oic acid (5), steppogenin 4′-O-beta-d-glucoside (6). Their structures and relative configurations were elucidated on the basis of spectroscopic methods, chemical reactions, and comparison with previously known analogs. All isolates were evaluated for their antimicrobial activity and only diterpenoids were found to possess a potent inhibitor effect against the range of microorganism.
Resumo:
In a study looking at the culturable, aerobic Actinobacteria associated with the human gastrointestinal tract, the vast majority of isolates obtained from dried human faeces belonged to the genus Bacillus and related bacteria. A total of 124 isolates were recovered from the faeces of 10 healthy adult donors. 16S rRNA gene sequence analyses showed the majority belonged to the families Bacillaceae (n = 81) and Paenibacillaceae (n = 3), with Bacillus species isolated from all donors. Isolates tentatively identified as Bacillus clausii (n = 32) and B. licheniformis (n = 28) were recovered most frequently, with the genera Lysinibacillus, Ureibacillus, Oceanobacillus, Ornithinibacillus and Virgibacillus represented in some donors. Phenotypic data confirmed the identities of isolates belonging to well-characterized species. Representatives of the phylum Actinobacteria were recovered in much lower numbers (n = 11). Many of the bacilli exhibited antimicrobial activity against one or more strains of Clostridium difficile, C. perfringens, Listeria monocytogenes and Staphylococcus aureus, with some (n = 12) found to have no detectable cytopathic effect on HEp-2 cells. This study has revealed greater diversity within gut-associated aerobic spore-formers than previous studies, and suggests that bacilli with potential as probiotics could be isolated from the human gut.
Resumo:
Spores from a number of different Bacillus species are currently being used as human and animal probiotics, although their mechanisms of action remain poorly understood. Here we describe the isolation of 237 presumptive gut-associated Bacillus spp. isolates that were obtained by heat and ethanol treatment of fecal material from organically reared broilers followed by aerobic plating. Thirty-one representative isolates were characterized according to their morphological, physiological, and biochemical properties as well as partial 16S rRNA gene sequences and screening for the presence of plasmid DNA. The Bacillus species identified included B. subtilis, B. pumilus, B. licheniformis, B. clausii, B. megaterium, B. firmus, and species of the B. cereus group, whereas a number of our isolates could not be classified. Intrinsic properties of potential importance for survival in the gut that could be advantageous for spore-forming probiotics were further investigated for seven isolates belonging to five different species. All isolates sporulated efficiently in the laboratory, and the resulting spores were tolerant to simulated gastrointestinal tract conditions. They also exhibited antimicrobial activity against a broad spectrum of bacteria, including food spoilage and pathogenic organisms such as Bacillus spp., Clostridium perfringens, Staphylococcus aureus, and Listeria monocytogenes. Importantly, the isolates were susceptible to most of the antibiotics tested, arguing that they would not act as donors for resistance determinants if introduced in the form of probiotic preparations. Together, our results suggest that some of the sporeformers isolated in this study have the potential to persist in or transiently associate with the complex gut ecosystem.
Resumo:
The aim of this work was to compare alginate and pectin beads for improving the survival of Lactobacillus plantarum and Bifidobacterium longum during storage in pomegranate and cranberry juice, and to evaluate the influence of various coating materials, including chitosan, gelatin and glucomannan on cell survival and on the size and hardness of the beads. In pomegranate juice, free cells of L. plantarum died within 4 weeks of storage and those of B. longum within 1 week; in cranberry juice both types of cells died within one week. Encapsulation within either alginate or pectin beads improved cell survival considerably, but coating of the beads with chitosan or gelatin improved it even further; coating with glucomannan did not have any positive effect. The double gelatin coated pectin beads gave the highest protection among all types of beads, as a final concentration of approximately 108 CFU/mL and 106 CFU/mL for both L. plantarum and B. longum was obtained after 6 weeks of storage in pomegranate and cranberry juice, respectively. The good protection could be attributed to the very strong interaction between the two polymers, as measured by turbidity experiments, leading to the formation of a polyelectrolyte complex. It was also shown that the coating was able to inhibit the penetration of gallic acid within the beads, which was used in this study as a model phenolic compound with antimicrobial activity; this is a likely mechanism through which the beads were able to protect the cells from the antimicrobial activity of phenolic compounds present in both types of juices. Despite their good protective effect, the pectin beads were considerably softer than the alginate beads, an issue that should be addressed in order to increase their mechanical stability.
Selected wheat seed defense proteins exhibit competitive binding to model microbial lipid interfaces
Resumo:
Puroindolines (Pins) and purothionins (Pths) are basic, amphiphilic, cysteine-rich wheat proteins that play a role in plant defense against microbial pathogens. We have examined the co-adsorption and sequential addition of Pins (Pin-a, Pin-b and a mutant form of Pin-b with Trp-44 to Arg-44 substitution) and β-purothionin (β-Pth) model anionic lipid layers, using a combination of surface pressure measurements, external reflection FTIR spectroscopy and neutron reflectometry. Results highlighted differences in the protein binding mechanisms, and in the competitive binding and penetration of lipid layers between respective Pins and β-Pth. Pin-a formed a blanket-like layer of protein below the lipid surface that resulted in the reduction or inhibition of β-Pth penetration of the lipid layer. Wild-type Pin-b participated in co-operative binding with β-Pth, whereas the mutant Pin-b did not bind to the lipid layer in the presence of β-Pth. The results provide further insight into the role of hydrophobic and cationic amino acid residues in antimicrobial activity.
Resumo:
The present study aims to evaluate the probiotic potential of lactic acid bacteria (LAB) isolated from naturally fermented olives and select candidates to be used as probiotic starters for the improvement of the traditional fermentation process and the production of newly added value functional foods. Seventy one (71) lactic acid bacterial strains (17 Leuconostoc mesenteroides, 1 Ln. pseudomesenteroides, 13 Lactobacillus plantarum, 37 Lb. pentosus, 1 Lb. paraplantarum, and 2 Lb. paracasei subsp. paracasei) isolated from table olives were screened for their probiotic potential. Lb. rhamnosus GG and Lb. casei Shirota were used as reference strains. The in vitro tests included survival in simulated gastrointestinal tract conditions, antimicrobial activity (against Listeria monocytogenes, Salmonella Enteritidis, Escherichia coli O157:H7), Caco-2 surface adhesion, resistance to 9 antibiotics and haemolytic activity. Three (3) Lb. pentosus, 4 Lb. plantarum and 2 Lb. paracasei subsp. paracasei strains demonstrated the highest final population (>8 log cfu/ml) after 3 h of exposure at low pH. The majority of the tested strains were resistant to bile salts even after 4 h of exposure, while 5 Lb. plantarum and 7 Lb. pentosus strains exhibited partial bile salt hydrolase activity. None of the strains inhibited the growth of the pathogens tested. Variable efficiency to adhere to Caco-2 cells was observed. This was the same regarding strains' susceptibility towards different antibiotics. None of the strains exhibited β-haemolytic activity. As a whole, 4 strains of Lb. pentosus, 3 strains of Lb. plantarum and 2 strains of Lb. paracasei subsp. paracasei were found to possess desirable in vitro probiotic properties similar to or even better than the reference probiotic strains Lb. casei Shirota and Lb. rhamnosus GG. These strains are good candidates for further investigation both with in vivo studies to elucidate their potential health benefits and in olive fermentation processes to assess their technological performance as novel probiotic starters.
Resumo:
There has been a recent surge in the use of silver as an antimicrobial agent in a wide range of domestic and clinical products, intended to prevent or treat bacterial infections and reduce bacterial colonization of surfaces. It has been reported that the antibacterial and cytotoxic properties of silver are affected by the assay conditions, particularly the type of growth media used in vitro. The toxicity of Ag+ to bacterial cells is comparable to that of human cells. We demonstrate that biologically relevant compounds such as glutathione, cysteine and human blood components significantly reduce the toxicity of silver ions to clinically relevant pathogenic bacteria and primary human dermal fibroblasts (skin cells). Bacteria are able to grow normally in the presence of silver nitrate at >20-fold the minimum inhibitory concentration (MIC) if Ag+ and thiols are added in a 1:1 ratio because the reaction of Ag+ with extracellular thiols prevents silver ions from interacting with cells. Extracellular thiols and human serum also significantly reduce the antimicrobial activity of silver wound dressings Aquacel-Ag (Convatec) and Acticoat (Smith & Nephew) to Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli in vitro. These results have important implications for the deployment of silver as an antimicrobial agent in environments exposed to biological tissue or secretions. Significant amounts of money and effort have been directed at the development of silver-coated medical devices (e.g. dressings, catheters, implants). We believe our findings are essential for the effective design and testing of antimicrobial silver coatings.
Resumo:
The interaction between tryptophan-rich puroindoline proteins and model bacterial membranes at the air-liquid interface has been investigated by FTIR spectroscopy, surface pressure measurements and Brewster angle microscopy. The role of different lipid constituents on the interactions between lipid membrane and protein was studied using wild type (Pin-b) and mutant (Trp44 to Arg44 mutant, Pin-bs) puroindoline proteins. The results show differences in the lipid selectivity of the two proteins in terms of preferential binding to specific lipid head groups in mixed lipid systems. Pin-b wild type was able to penetrate mixed layers of phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) head groups more deeply compared to the mutant Pin-bs. Increasing saturation of the lipid tails increased penetration and adsorption of Pin-b wild type, but again the response of the mutant form differed. The results provide insight as to the role of membrane architecture, lipid composition and fluidity, on antimicrobial activity of proteins. Data show distinct differences in the lipid binding behavior of Pin-b as a result of a single residue mutation, highlighting the importance of hydrophobic and charged amino acids in antimicrobial protein and peptide activity.
Resumo:
Aim. To investigate the root canal microbiota of primary teeth with apical periodontitis and the in vivo antimicrobial effects of a calcium hydroxide/chlorhexidine paste used as root canal dressing. Design. Baseline samples were collected from 30 root canals of primary teeth with apical periodontitis. Then, the root canals were filled with a calcium hydroxide paste containing 1% chlorhexidine for 14 days and the second bacteriologic samples were taken prior to root canal filling. Samples were submitted to microbiologic culture procedure to detect root canal bacteria and processed for checkerboard DNA-DNA hybridization. Results. Baseline microbial culture revealed high prevalence and cfu number of anaerobic, black-pigmented bacteroides, Streptococcus, and aerobic microorganisms. Following root canal dressing, the overall number of cfu was dramatically diminished compared to initial contamination (P < 0.05), although prevalence did not change (P > 0.05). Of 35 probes used for checkerboard DNA-DNA hybridization, 31 (88.57%) were present at baseline, and following root canal dressing, the number of positive probes reduced to 13 (37.14%). Similarly, the number of bacterial cells diminished folowing application of calcium hydroxide/chlorhexidine root canal dressing (P = 0.006). Conclusion. Apical periodontitis is caused by a polymicrobial infection, and a calcium hydroxide/chlorhexidine paste is effective in reducing the number of bacteria inside root canals when applied as a root canal dressing.
Resumo:
The present study aimed to evaluate whether the association between a calcium hydroxide paste (Calen paste) and 0.4% chlorhexidine (CHX) affects the development of the osteogenic phenotype in vitro. With rat calvarial osteogenic cell cultures, the following parameters were assayed: cell morphology and viability, alkaline phosphatase activity, total protein content, bone sialoprotein immunolocalization, and mineralized nodule formation. Comparisons were carried out by using the nonparametric Kruskal-Wallis test (level of significance, 5%). The results showed that the association between Calen paste and 0.4% CHX did not affect the development of the osteogenic phenotype. No significant changes were observed in terms of cell shape, cell viability, alkaline phosphatase activity, and the total amount of bone-like nodule formation among control, Calen, or Calen + CHX groups. The strategy to combine Ca(OH)(2) and CHX to promote a desirable synergistic antibacterial effect during endodontic treatment in vivo might not significantly affect osteoblastic cell biology. (J Endod 2008;34:1485-1489)
Resumo:
Two new lignans, magnovatins A (1) and B (2), along with nine known compounds, were isolated from the leaves of Magnolia ovata. The known compounds were identified as acuminatin (3), licarin A (4), kadsurenin M, 4-O-demethylkadsurenin M, oleiferin A, oleiferin C, spathulenol, parthenolide, and 11,13-dehydrocompressanolide. In addition, compounds I and 2 yielded four new derivatives (1a, 1b, 2a, and 2b). The structures of the new compounds were established on the basis of spectrometric data evaluation. Free-radical scavenging and antimicrobial activities of the major compounds 1, 3, and 4 were investigated.
Resumo:
Phylogenetic relationships of Croton section Cleodora (Klotzsch) Baill. were evaluated using the nuclear ribosomal ITS and the chloroplast trnl-F and trnH-psbA regions. Our results show a strongly supported clade containing most previously recognized section Cleodora species, plus some other species morphologically similar to them. Two morphological synapomorphies that support section Cleodora as a clade include pistillate flowers in which the sepals overlap to some degree, and styles that are connate at the base to varying degrees. The evolution of vegetative and floral characters that have previously been relied on for taxonomic decisions within this group are evaluated in light of the phylogenetic hypotheses. Within section Cleodora there are two well-supported clades, which are proposed here as subsections (subsection Sphaerogyni and subsection Spruceani). The resulting phylogenetic hypothesis identifies the closest relatives of the medicinally important and essential oil-rich Croton cajucara Benth. as candidates for future screening in phytochemical and pharmacological studies. (C) 2011 Elsevier Inc. All rights reserved.