988 resultados para Antihistamine antagonist


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cannabidiol (CBD) is a major nonpsychotomimetic component of Cannabis sativa that has been shown to have an anxiolytic effect in human and animal models. Earlier studies suggest that these effects involve facilitation of serotonin, a neurotransmitter that has also been related to obsessive-compulsive disorder. On the basis of this evidence, this study investigated the effects of CBD in C57BL/6J mice submitted to the marble-burying test (MBT), an animal model proposed to reflect compulsive behaviour. CBD (15, 30 and 60 mg/kg) induced a significant decrease in the number of buried marbles compared with controls (34, 41 and 48%, respectively). A similar, although larger, decrease was also found after the serotonin selective reuptake inhibitor paroxetine (10 mg/kg, 77% decrease) and the benzodiazepine diazepam (2.5 mg/kg, 84% decrease). The effect of CBD (30 mg/kg) was still significant after 7 days of daily repeated administration, whereas the effect of diazepam disappeared. Pretreatment with WAY100635 (3 mg/kg), a 5HT1A receptor antagonist, prevented the effects of paroxetine but failed to alter those of CBD. These latter effects, however, were prevented by pretreatment with the CB1 receptor antagonist AM251 (1 mg/kg). These results indicated that CBD and paroxetine decrease the number of buried marbles in the MBT through distinct pharmacological mechanisms. They also suggest a potential role of drugs acting on the cannabinoid system in modulating compulsive behaviour. Behavioural Pharmacology 21: 353-358 (C) 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction. Endothelin-1 (ET-1), a potent vasoconstrictor peptide, acts mainly through the Gprotein-coupled ET(A) receptor (ET(A)R). Increased vascular ET-1 production and constrictor sensitivity have been observed in various cardiovascular diseases, including hypertension, as well as erectile dysfunction. The internal pudendal artery (IPA) supplies blood to the vagina and clitoris. Inadequate blood flow through the IPA may lead to insufficient vaginal engorgement and clitoral tumescence. Aim. Characterize the effects of ET-1 on the IPA and clitoral artery (CA). Methods. IPA and CA from female Sprague Dawley rats (225-250 g) were mounted in myograph chambers. Arterial segments were submitted to increasing concentrations of ET-1 (10-10-10-6 M). Segments were incubated with the ET(A)R antagonist, atrasentan (10-8 M) or the Rho-kinase inhibitor, Y-27632 (10-6 M) 30 minutes prior to agonist exposure. All E(max) values are expressed as % KCl-induced maximal contraction. ET(A)R, RhoA, and Rho-kinase expression from IPA was evaluated by Western blot. mRNA of preproET-1, ET(A)R, ET(B)R, RhoA, and Rho-kinase were measured by real time PCR. Main Outcome Measures. ET-1 constrictor sensitivity in IPA and CA, protein expression and messenger RNA levels of ET-1-mediated constriction components. Results. ET-1 concentration-dependently contracted IPA (% Contraction and pD2, respectively: 156 +/- 18, 8.2 +/- 0.1) and CA (163 +/- 12, 8.8 +/- 0.08), while ET(A)R antagonism reduced ET-1-mediated contraction (IPA: 104 +/- 23, 6.4 +/- 0.2; CA: 112 +/- 17, 6.6 +/- 0.08). Pretreatment with Y-27632 significantly shifted ET-1 pD2 in IPA (108 +/- 24, 7.9 +/- 0.1) and CA (147 +/- 58 and 8.0 +/- 0.25). Protein expression of ET(A)R, ET(B)R, RhoA, and Rho-kinase were detected in IPA. IPA and CA contained preproET-1, ET(A)R, ET(B)R, RhoA, and Rho-kinase message. Conclusion. We observed that the IPA and CA are sensitive to ET-1, signaling through the ET(A)R and Rho-kinase pathway. These data indicate that ET-1 may play a role in vaginal and clitoral blood flow and may be important in pathologies where ET-1 levels are elevated. Allahdadi KJ, Hannan JL, Tostes RC, and Webb RC. Endothelin-1 induces contraction of female rat internal pudendal and clitoral arteries through ETA receptor and Rho-kinase activation. J Sex Med 2010;7:2096-2103.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A wealth of evidence suggests a role for brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin-related kinase B (TrkB) in the aetiology of depression and in the mode of action of antidepressant drugs. Less clear is the involvement of this neurotrophin in other stress-related pathologies such as anxiety disorders. The dorsal periaqueductal grey matter (DPAG), a midbrain area rich in BDNF and TrkB receptor mRNAs and proteins, has been considered a key structure in the pathophysiology of panic disorder. In this study we investigated the effect of intra-DPAG injection of BDNF in a proposed animal model of panic: the escape response evoked by the electrical stimulation of the same midbrain area. To this end, the intensity of electrical current that needed to be applied to DPAG to evoke escape behaviour was measured before and after microinjection of BDNF. We also assessed whether 5-HT- or GABA-related mechanisms may account for the putative behavioural/autonomic effects of the neurotrophin. BDNF (0.05, 0.1, 0.2 ng) dose-dependently inhibited escape performance, suggesting a panicolytic-like effect. Local microinjection of K252a, an antagonist of TrkB receptors, or bicuculline, a GABA(A) receptor antagonist, blocked this effect. Intra-DPAG administration of WAY-100635 or ketanserin, respectively 5-HT(1A) and 5-HT(2A/2c) receptor antagonists, did not alter BDNF`s effects on escape. Bicuculline also blocked the inhibitory effect of BDNF on mean arterial pressure increase caused by electrical stimulation of DPAG. Therefore, in the DPAG, BDNF-TrkB signalling interacts with the GABAergic system to cause a panicolytic-like effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although several pieces of evidence indicate that the endocannabinoid system modulates anxiety-like behaviors and stress adaptation, few studies have investigated the brain sites of these effects. The ventral hippocampus (VHC) has been related to anxiety behaviors and has a high expression of cannabinoid-1 (CBI) receptors. Moreover, endocannabinoid signaling in the hippocampus is proposed to regulate stress adaptation. In the present study we investigated the role of previous stressful experience on the effects of AM404, an anandamide uptake inhibitor, microinjected into the VHC of rats submitted to the elevated plus maze (EPM), a widely used animal model of anxiety. Stressed animals were forced restrained for two h 24 h before the test. AM404 (5-50 pmol) microinjection promoted an anxiogenic-like effect in non-stressed rats but decreased anxiety in stressed animals. AM251 (0.01 to 1000 pmol), a CBI receptor antagonist, failed to change behavior in the EPM over a wide dose range but prevented the effects of AM404. Anxiolytic-like effects of AM404 (5 pmol) intra-VHC injection were also observed in the Vogel conflict test (VCT), another model of anxiety that involves previous exposure to stressful situations (48 h of water deprivation). These results suggest that facilitation of endocannabinoid system neurotransmission in the ventral hippocampus modulates anxiety-like behaviors and that this effect depends on previous stress experience. (C) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Matsumoto T, Tostes RC, Webb RC. Uridine adenosine tetraphosphate-induced contraction is increased in renal but not pulmonary arteries from DOCA-salt hypertensive rats. Am J Physiol Heart Circ Physiol 301: H409-H417, 2011. First published May 6, 2011; doi:10.1152/ajpheart.00084.2011.-Uridine adenosine tetraphosphate (Up(4)A) was reported as a novel endothelium-derived contracting factor. Up(4)A contains both purine and pyrimidine moieties, which activate purinergic (P2)X and P2Y receptors. However, alterations in the vasoconstrictor responses to Up(4)A in hypertensive states remain unclear. The present study examined the effects of Up(4)A on contraction of isolated renal arteries (RA) and pulmonary arteries (PA) from DOCA-salt rats using isometric tension recording. RA from DOCA-salt rats exhibited increased contraction to Up(4)A versus arteries from control uninephrectomized rats in the absence and presence of N(G)-nitro-L-arginine (nitric oxide synthase inhibitor). On the other hand, the Up(4)A-induced contraction in PA was similar between the two groups. Up(4)A-induced contraction was inhibited by suramin (nonselective P2 antagonist) but not by diinosine pentaphosphate pentasodium salt hydrate (Ip5I; P2X(1) antagonist) in RA from both groups. Furthermore, 2-thiouridine 5`-triphosphate tetrasodium salt (2-Thio-UTP; P2Y(2) agonist)-, uridine-5`-(gamma-thio)-triphosphate trisodium salt (UTP gamma S; P2Y(2)/P2Y(4) agonist)-, and 5-iodouridine-5`-O-diphosphate trisodium salt (MRS 2693; P2Y(6) agonist)-induced contractions were all increased in RA from DOCA-salt rats. Protein expression of P2Y(2)-, P2Y(4)-, and P2Y(6) receptors in RA was similar between the two groups. In DOCA-salt RA, the enhanced Up(4)A-induced contraction was reduced by PD98059, an ERK pathway inhibitor, and Up(4)Astimulated ERK activation was increased. These data are the first to indicate that Up(4)A-induced contraction is enhanced in RA from DOCA-salt rats. Enhanced P2Y receptor signaling and activation of the ERK pathway together represent a likely mechanism mediating the enhanced Up(4)A-induced contraction. Up(4)A might be of relevance in the pathophysiology of vascular tone regulation and renal dysfunction in arterial hypertension.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

IL-17 is an important cytokine in the physiopathology of rheumatoid arthritis (RA). However, its participation in the genesis of nociception during RA remains undetermined. In this study, we evaluated the role of IL-17 in the genesis of articular nociception in a model of antigen (mBSA)-induced arthritis. We found that mBSA challenge in the femur-tibial joint of immunized mice induced a dose-and time-dependent mechanical hypernociception. The local IL-17 concentration within the mBSA-injected joints increased significantly over time. Moreover, co-treatment of mBSA challenged mice with an antibody against IL-17 inhibited hypernociception and neutrophil recruitment. In agreement, intraarticular injection of IL-17 induced hypernociception and neutrophil migration, which were reduced by the pre-treatment with fucoidin, a leukocyte adhesion inhibitor. The hypernociceptive effect of IL-17 was also reduced in TNFR1(-/-) mice and by pre-treatment with infliximab (anti-TNF antibody), a CXCR1/2 antagonist or by an IL-1 receptor antagonist. Consistent with these findings, we found that IL-17 injection into joints increased the production of TNF-alpha, IL-1 beta and CXCL1/KC. Treatment with doxycycline (non-specific MMPs inhibitor), bosentan (ET(A)/ET(B) antagonist), indomethacin (COX inhibitor) or guanethidine (sympathetic blocker) inhibited IL-17-induced hypernociception. IL-17 injection also increased PGE(2) production, MMP-9 activity and COX-2, MMP-9 and PPET-1 mRNA expression in synovial membrane. These results suggest that IL-17 is a novel pro-nociceptive cytokine in mBSA-induced arthritis, whose effect depends on both neutrophil migration and various pro-inflammatory mediators, as TNF-alpha, IL-1 beta, CXCR1/2 chemokines ligands, MMPs, endothelins, prostaglandins and sympathetic amines. Therefore, it is reasonable to propose IL-17 targeting therapies to control this important RA symptom. (C) 2009 International Association for the Study of Pain. Published by Elsevier B. V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and purpose: Cannabidiol (CBD) is a non-psychotomimetic compound from Cannabis sativa that induces anxiolytic- and antipsychotic-like effects in animal models. Effects of CBD may be mediated by the activation of 5-HT(1A) receptors. As 5-HT(1A) receptor activation may induce antidepressant-like effects, the aim of this work was to test the hypothesis that CBD would have antidepressant-like activity in mice as assessed by the forced swimming test. We also investigated if these responses depended on the activation of 5-HT(1A) receptors and on hippocampal expression of brain-derived neurotrophic factor (BDNF). Experimental approach: Male Swiss mice were given (i.p.) CBD (3, 10, 30, 100 mg.kg(-1)), imipramine (30 mg.kg(-1)) or vehicle and were submitted to the forced swimming test or to an open field arena, 30 min later. An additional group received WAY100635 (0.1 mg.kg(-1), i.p.), a 5-HT(1A) receptor antagonist, before CBD (30 mg.kg(-1)) and assessment by the forced swimming test. BDNF protein levels were measured in the hippocampus of another group of mice treated with CBD (30 mg.kg(-1)) and submitted to the forced swimming test. Key results: CBD (30 mg.kg(-1)) treatment reduced immobility time in the forced swimming test, as did the prototype antidepressant imipramine, without changing exploratory behaviour in the open field arena. WAY100635 pretreatment blocked CBD-induced effect in the forced swimming test. CBD (30 mg.kg(-1)) treatment did not change hippocampal BDNF levels. Conclusion and implications: CBD induces antidepressant-like effects comparable to those of imipramine. These effects of CBD were probably mediated by activation of 5-HT(1A) receptors. British Journal of Pharmacology (2010) 159, 122-128; doi:10.1111/j.1476-5381.2009.00521.x; published online 4 December 2009

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, we evaluated cardiac baroreflex responses of rats submitted to acute restraint stress. The baroreflex was tested: immediately before, during a 30 min exposure to restraint stress, as well as 30 and 60 min after ending the stress session (recovery period). Restraint increased both mean arterial pressure (MAP) and heart rate (HR). The magnitude of tachycardiac responses evoked by intravenous infusion of sodium nitroprusside was higher during restraint stress, whereas that of bradycardiac responses evoked by intravenous infusion of phenylephrine was decreased. Restraint-evoked baroreflex changes were still observed at 30 min into the recovery period, although MAP and HR values had already returned to control values. The baroreflex was back to control values at 60 min of the recovery period. Intravenous administration of the selective beta(1)-adrenoceptor antagonist atenolol blocked the restraint-evoked increase in the tachycardiac baroreflex response, but did not affect the effects on the bradycardiac response. In conclusion, the present results suggest that psychological stresses, such as those resulting from acute restraint, affect the baroreflex. Restraint facilitated the tachycardiac baroreflex response and reduced the bradycardiac response. Restraint-related effects on baroreflex persisted for at least 30 min after ending restraint, although MAP and HR had already returned to control levels. The cardiac baroreflex returned to control values 60 min after the end of restraint, indicating non-persistent effects of acute restraint on the baroreflex. Results also indicate that the influence of restraint stress on the baroreflex tachycardiac response is mainly dependent on cardiac sympathetic activity, whereas the action on the bradycardiac response is mediated by the cardiac parasympathetic component.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study assessed the effect of the agonist 15d-PGJ(2) administered into the rat temporomandibular joint (TMJ) on nociceptive behavioral and the anti-inflammatory potential of this prostaglandin on TMJ. It was observed that 15-deoxy-(Delta 12,14)-prostaglandin J(2) (15d-PGJ(2)) significantly reduced formalin-induced nociceptive behavior in a dose dependent manner, however injection of 15d-PGJ(2) into the contralateral TMJ failed to reduce such effects. This antinociceptive effect is dependent on peroxisome proliferator-activated receptors-gamma (PPAR-gamma) since pre-treatment with GW9662 (PPAR-gamma receptor antagonist) blocked the antinociceptive effect of 15d-PGJ(2) in the TMJ. In addition, the antinociceptive effect of 15d-PGJ(2) was also blocked by naloxone suggesting the involvement of peripheral opioids in the process. Confirming this hypothesis pre-treatment with kappa, delta, but not mu receptor antagonists significantly reduced the antinociceptive effect of 15d-PGJ(2) in the TMJ. Similarly to opioid agonists, the 15d-PGJ(2) antinociceptive action depends on the nitric oxide (NO)/guanilate cyclase (cGMP)/ATP-sensitive potassium channel blocker(K(ATP)(+)) channel pathway since it was prevented by the pre-treatment with the inhibitors of nitric oxide synthase (NOS; aminoguanidine), cGMP (ODQ), or the K(ATP)(+) (glibenclamide). In addition, 15d-PGJ(2) (100 ng/TMJ) inhibits 5-HT-induced TMJ hypernociception. Besides, TMJ treated with 15d-PGJ(2) showed lower vascular permeability, assessed by Evan`s Blue extravasation, and also lower neutrophil migration induced by carrageenan administration. Taken together, these results demonstrate that 15d-PGJ(2) has a potential peripheral antinociceptive and anti-inflammatory effect in the TMJ via PPAR-gamma activation. The results also suggest that 15d-PGJ(2) induced-peripheral antinociceptive response in the TMJ is mediated by kappa/delta opioid receptors by the activation of the intracellular L-arginine/NO/cGMP/K(ATP)(+) channel pathway. The pharmacological properties of the peripheral administration of 15d-PGJ(2) highlight the potential use of this PPAR-gamma agonist on TMJ inflammatory pain conditions. (C) 2009 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

P>In the present study, we investigated the effects of inhibition of the lateral hypothalamus (LH) neurotransmission with bilateral microinjection of CoCl(2), a non-selective blocker of neurotransmission, on modulation of cardiac baroreflex responses in conscious rats as well as the involvement of LH glutamatergic neurotransmission in this modulation. Reflex bradycardiac and tachycardiac responses to blood pressure increases (following i.v. infusion of phenylephrine) or decreases (following i.v. infusion of sodium nitroprusside) were investigated in conscious male Wistar rats. Responses were evaluated before and after microinjection of 1 nmol/100 nL CoCl(2), 2 nmol/100 nL 1,2,3,4-tetrahydro-6-nitro-2,3-dioxobenzoquinoxaline-7-sulphonamide (NBQX; a selective non-N-methyl-d-aspartate (NMDA) glutamate receptor antagonist) or different doses (2, 4 or 8 nmol/100 nL) of the selective NMDA glutamate receptor antagonist LY235959. Microinjection of CoCl(2) into the LH had no effect on the tachycardiac baroreflex response, but did evoke a decrease in the reflex bradycardia caused by increases in blood pressure. Microinjection of NBQX into the LH had a similar effect on reflex bradycardia as CoCl(2), but had no effect on the tachycardiac response. Microinjection of increasing doses of LY235959 into the LH had no effect on the cardiac baroreflex response. In conclusion, the data suggest that the LH has a tonic facilitatory influence on the parasympathetic component of the baroreflex. The results also indicate that this facilitatory influence is mediated by local LH glutamatergic neurotransmission through non-NMDA glutamatergic receptors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The insular cortex (IC) has been reported to modulate the cardiac parasympathetic activity of the baroreflex in unanesthetized rats. However, which neurotransmitters are involved in this modulation is still unclear. In the present study, we evaluated the possible involvement of local IC-noradrenergic neurotransmission in modulating reflex bradycardiac responses. Bilateral microinjection of the selective alpha(1)-adrenoceptor antagonist WB4101 (15 nmol/100 nL), into the IC of male Wistar rats, increased the gain of reflex bradycardia in response to mean arterial pressure (MAP) increases evoked by intravenous infusion of phenylephrine. However, bilateral microinjection of equimolar doses of either the selective alpha(2)-adrenoceptor antagonist RX821002 or the non-selective beta-adrenoceptor antagonist propranolol into the IC did not affect the baroreflex response. No effects were observed in basal MAP or heart rate values after bilateral microinjection of noradrenergic antagonists into the IC, thus suggesting no tonic influence of IC-noradrenergic neurotransmission on resting cardiovascular parameters. In conclusion, these data provide evidence that local IC-noradrenergic neurotransmission has an inhibitory influence on baroreflex responses to blood pressure increase evoked by phenylephrine infusion through activation of alpha(1)-adrenoceptors. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and purpose: Chemokines orchestrate neutrophil recruitment to inflammatory foci. In the present study, we evaluated the participation of three chemokines, KC/CXCL1, MIP-2/CXCL2 and LIX/CXCL5, which are ligands for chemokine receptor 2 (CXCR2), in mediating neutrophil recruitment in immune inflammation induced by antigen in immunized mice. Experimental approach: Neutrophil recruitment was assessed in immunized mice challenged with methylated bovine serum albumin, KC/CXCL1, LIX/CXCL5 or tumour necrosis factor (TNF)-alpha. Cytokine and chemokine levels were determined in peritoneal exudates and in supernatants of macrophages and mast cells by elisa. CXCR2 and intercellular adhesion molecule 1 (ICAM-1) expression was determined using immunohistochemistry and confocal microscopy. Key results: Antigen challenge induced dose- and time-dependent neutrophil recruitment and production of KC/CXCL1, LIX/CXCL5 and TNF-alpha, but not MIP-2/CXCL2, in peritoneal exudates. Neutrophil recruitment was inhibited by treatment with reparixin (CXCR1/2 antagonist), anti-KC/CXCL1, anti-LIX/CXCL5 or anti-TNF-alpha antibodies and in tumour necrosis factor receptor 1-deficient mice. Intraperitoneal injection of KC/CXCL1 and LIX/CXCL5 induced dose- and time-dependent neutrophil recruitment and TNF-alpha production, which were inhibited by reparixin or anti-TNF-alpha treatment. Macrophages and mast cells expressed CXCR2 receptors. Increased macrophage numbers enhanced, while cromolyn sodium (mast cell stabilizer) diminished, LIX/CXCL5-induced neutrophil recruitment. Macrophages and mast cells from immunized mice produced TNF-alpha upon LIX/CXCL5 stimulation. Methylated bovine serum albumin induced expression of ICAM-1 on mesenteric vascular endothelium, which was inhibited by anti-TNF-alpha or anti-LIX/CXCL5. Conclusion and implications: Following antigen challenge, CXCR2 ligands are produced and act on macrophages and mast cells triggering the production of TNF-alpha, which synergistically contribute to neutrophil recruitment through induction of the expression of ICAM-1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The superior colliculus (SC) is a mesencephalic area involved in the mediation of defensive movements associated with cardiovascular changes. Noradrenaline (NA) is a neurotransmitter with an important role in central cardiovascular regulation exerted by several structures of the central nervous system. Although noradrenergic nerve terminals have been observed in the SC, there are no reports on the effects of local NA injection into this area. Taking this into consideration, we studied the cardiovascular effects of NA microinjection into the SC of unanesthetized rats. Microinjection of NA into the SC evoked a dose-dependent blood pressure increase and a heart rate decrease in unanesthetized rats. The pressor response to NA was not modified by intravenous pretreatment with the vasopressin v(1)-receptor antagonist dTyr(CH(2))(5) (Me)AVP, indicating a lack of vasopressin involvement in the response mediation. The effect of NA microinjection into the SC was blocked by intravenous pretreatment with the ganglionic blocker pentolinium, indicating its mediation by the sympathetic nervous system. Although the pressor response to NA was not affected by adrenal demedullation, the accompanying bradycardia was potentiated, suggesting some involvement of the sympathoadrenal system in the cardiovascular response to NA microinjection into the SC. In summary, results indicate that stimulation of noradrenergic receptors in the SC causes cardiovascular responses which are mediated by activation of both neural and adrenal sympathetic nervous system components. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to evaluate the protective effect of hydrogen sulfide (H(2)S) on ethanol-induced gastric lesions in mice and the influence of ATP-sensitive potassium (K(ATP)) channels, capsaicin-sensitive sensory afferent neurons, and transient receptor potential vanilloid (TRPV) 1 receptors on such an effect. Saline and L-cysteine alone or with propargylglycine, sodium hydrogen sulfide (NaHS), or Lawesson`s reagent were administrated for testing purposes. For other experiments, mice were pretreated with glibenclamide, neurotoxic doses of capsaicin, or capsazepine. Afterward, mice received L-cysteine, NaHS, or Lawesson`s reagent. After 30 min, 50% ethanol was administrated by gavage. After 1 h, mice were sacrificed, and gastric damage was evaluated by macroscopic and microscopic analyses. L-Cysteine, NaHS, and Lawesson`s reagent treatment prevented ethanol-induced macroscopic and microscopic gastric damage in a dose-dependent manner. Administration of propargylglycine, an inhibitor of endogenous H(2)S synthesis, reversed gastric protection induced by L-cysteine. Glibenclamide reversed L-cysteine, NaHS, or Lawesson`s reagent gastroprotective effects against ethanol-induced macroscopic damage in a dose-dependent manner. Chemical ablation of sensory afferent neurons by capsaicin reversed gastroprotective effects of L-cysteine or H(2)S donors (NaHS or Lawesson`s reagent) in ethanol-induced macroscopic gastric damage. Likewise, in the presence of the TRPV1 antagonist capsazepine, the gastroprotective effects of L-cysteine, NaHS, or Lawesson`s reagent were also abolished. Our results suggest that H(2)S prevents ethanol-induced gastric damage. Although there are many mechanisms through which this effect can occur, our data support the hypothesis that the activation of K(ATP) channels and afferent neurons/TRPV1 receptors is of primary importance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and purpose: D-Fructose-1,6-bisphosphate (FBP) is an intermediate in the glycolytic pathway, exerting pharmacological actions on inflammation by inhibiting cytokine production or interfering with adenosine production. Here, the possible antinociceptive effect of FBP and its mechanism of action in the carrageenin paw inflammation model in mice were addressed, focusing on the two mechanisms described above. Experimental approach: Mechanical hyperalgesia (decrease in the nociceptive threshold) was evaluated by the electronic pressure-metre test; cytokine levels were measured by elisa and adenosine was determined by high performance liquid chromatography. Key results: Pretreatment of mice with FBP reduced hyperalgesia induced by intraplantar injection of carrageenin (up to 54%), tumour necrosis factor alpha (40%), interleukin-1 beta (46%), CXCL1 (33%), prostaglandin E(2) (41%) or dopamine (55%). However, FBP treatment did not alter carrageenin-induced cytokine (tumour necrosis factor alpha and interleukin-1 beta) or chemokine (CXCL1) production. On the other hand, the antinociceptive effect of FBP was prevented by systemic and intraplantar treatment with an adenosine A(1) receptor antagonist (8-cyclopentyl-1,3-dipropylxanthine), suggesting that the FBP effect is mediated by peripheral adenosine acting on A(1) receptors. Giving FBP to mice increased adenosine levels in plasma, and adenosine treatment of paw inflammation presented a similar antinociceptive mechanism to that of FBP. Conclusions and implications: In addition to anti-inflammatory action, FBP also presents an antinociceptive effect upon inflammatory hyperalgesia. Its mechanism of action seems dependent on adenosine production but not on modulation of hyperalgesic cytokine/chemokine production. In turn, adenosine acts peripherally on its A(1) receptor inhibiting hyperalgesia. FBP may have possible therapeutic applications in reducing inflammatory pain.