963 resultados para Animal genetic resources
Resumo:
BACKGROUND: Canalization is defined as the stability of a genotype against minor variations in both environment and genetics. Genetic variation in degree of canalization causes heterogeneity of within-family variance. The aims of this study are twofold: (1) quantify genetic heterogeneity of (within-family) residual variance in Atlantic salmon and (2) test whether the observed heterogeneity of (within-family) residual variance can be explained by simple scaling effects. RESULTS: Analysis of body weight in Atlantic salmon using a double hierarchical generalized linear model (DHGLM) revealed substantial heterogeneity of within-family variance. The 95% prediction interval for within-family variance ranged from ~0.4 to 1.2 kg2, implying that the within-family variance of the most extreme high families is expected to be approximately three times larger than the extreme low families. For cross-sectional data, DHGLM with an animal mean sub-model resulted in severe bias, while a corresponding sire-dam model was appropriate. Heterogeneity of variance was not sensitive to Box-Cox transformations of phenotypes, which implies that heterogeneity of variance exists beyond what would be expected from simple scaling effects. CONCLUSIONS: Substantial heterogeneity of within-family variance was found for body weight in Atlantic salmon. A tendency towards higher variance with higher means (scaling effects) was observed, but heterogeneity of within-family variance existed beyond what could be explained by simple scaling effects. For cross-sectional data, using the animal mean sub-model in the DHGLM resulted in biased estimates of variance components, which differed substantially both from a standard linear mean animal model and a sire-dam DHGLM model. Although genetic differences in canalization were observed, selection for increased canalization is difficult, because there is limited individual information for the variance sub-model, especially when based on cross-sectional data. Furthermore, potential macro-environmental changes (diet, climatic region, etc.) may make genetic heterogeneity of variance a less stable trait over time and space.
Resumo:
Background: The sensitivity to microenvironmental changes varies among animals and may be under genetic control. It is essential to take this element into account when aiming at breeding robust farm animals. Here, linear mixed models with genetic effects in the residual variance part of the model can be used. Such models have previously been fitted using EM and MCMC algorithms. Results: We propose the use of double hierarchical generalized linear models (DHGLM), where the squared residuals are assumed to be gamma distributed and the residual variance is fitted using a generalized linear model. The algorithm iterates between two sets of mixed model equations, one on the level of observations and one on the level of variances. The method was validated using simulations and also by re-analyzing a data set on pig litter size that was previously analyzed using a Bayesian approach. The pig litter size data contained 10,060 records from 4,149 sows. The DHGLM was implemented using the ASReml software and the algorithm converged within three minutes on a Linux server. The estimates were similar to those previously obtained using Bayesian methodology, especially the variance components in the residual variance part of the model. Conclusions: We have shown that variance components in the residual variance part of a linear mixed model can be estimated using a DHGLM approach. The method enables analyses of animal models with large numbers of observations. An important future development of the DHGLM methodology is to include the genetic correlation between the random effects in the mean and residual variance parts of the model as a parameter of the DHGLM.
Resumo:
Understanding the genetic basis of traits involved in adaptation is a major challenge in evolutionary biology but remains poorly understood. Here, we use genome-wide association mapping using a custom 50 k single nucleotide polymorphism (SNP) array in a natural population of collared flycatchers to examine the genetic basis of clutch size, an important life-history trait in many animal species. We found evidence for an association on chromosome 18 where one SNP significant at the genome-wide level explained 3.9% of the phenotypic variance. We also detected two suggestive quantitative trait loci (QTLs) on chromosomes 9 and 26. Fitness differences among genotypes were generally weak and not significant, although there was some indication of a sex-by-genotype interaction for lifetime reproductive success at the suggestive QTL on chromosome 26. This implies that sexual antagonism may play a role in maintaining genetic variation at this QTL. Our findings provide candidate regions for a classic avian life-history trait that will be useful for future studies examining the molecular and cellular function of, as well as evolutionary mechanisms operating at, these loci.
Resumo:
This paper describes the formulation of a Multi-objective Pipe Smoothing Genetic Algorithm (MOPSGA) and its application to the least cost water distribution network design problem. Evolutionary Algorithms have been widely utilised for the optimisation of both theoretical and real-world non-linear optimisation problems, including water system design and maintenance problems. In this work we present a pipe smoothing based approach to the creation and mutation of chromosomes which utilises engineering expertise with the view to increasing the performance of the algorithm whilst promoting engineering feasibility within the population of solutions. MOPSGA is based upon the standard Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and incorporates a modified population initialiser and mutation operator which directly targets elements of a network with the aim to increase network smoothness (in terms of progression from one diameter to the next) using network element awareness and an elementary heuristic. The pipe smoothing heuristic used in this algorithm is based upon a fundamental principle employed by water system engineers when designing water distribution pipe networks where the diameter of any pipe is never greater than the sum of the diameters of the pipes directly upstream resulting in the transition from large to small diameters from source to the extremities of the network. MOPSGA is assessed on a number of water distribution network benchmarks from the literature including some real-world based, large scale systems. The performance of MOPSGA is directly compared to that of NSGA-II with regard to solution quality, engineering feasibility (network smoothness) and computational efficiency. MOPSGA is shown to promote both engineering and hydraulic feasibility whilst attaining good infrastructure costs compared to NSGA-II.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fluorescence amplified fragment length polymorphism (fAFLP) was used to assess the genetic relatedness of 40 Staphylococcus aureus strains isolated from human and animal skin samples in seven dairy farms with manual milking. S. aureus was isolated from 11 out of 30 (36%) human skin samples and from 29 out of 100 (29%) teat skin samples from apparently healthy cows. Genomic DNA from each isolate was double-digested with EcoRI and MseI and complementary oligonucleotide adaptors were ligated to the restriction fragments. Pre-selective and selective, amplification reactions were performed, the amplified fragments were separated by electrophoresis in an ABI377 sequencer and analysed using GeneScan 3.1 and Genotyper 2.5. Three single isolates (a-c), a predominant cluster with 35 isolates (d) and another cluster with two isolates (e) were identified. Both clusters d and e included human and animal isolates genetically related, because the profiles had 90-100% homology. Since no cluster was comprised uniquely of human or animal isolates and given the close genetic relatedness among human and animal samples in the farms, the present findings support the. hypothesis that dairy workers can spread S. aureus through manual milking. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
(Co) variance components were estimated for visual scores of conformation (CY), early finishing (PY) and muscling (MY) at 550 days of age (yearling), average daily gain from weaning to yearling (GWY), conformation (CW), early finishing (PW) and muscling (MW) scores at weaning, and average daily gain from birth to weaning (GBW) in animals forming the Brazilian Brangus breed born between 1986 and 2002 from the livestock files of GenSys Consultants Associados S/C Ltda. The data set contained 53 683; 45 136; 52 937; 56 471; 24 531; 21 166; 24 006 and 25 419 records for CW, PW, MW, GBW, CY, PY, MY and GWY, respectively. Data were analyzed by the restricted maximum likelihood method using single-and two-trait animal models. Direct heritability estimates obtained by single-trait analysis were 0.12, 0.14, 0.13 and 0.14 for CY, PY and MY scores and GWY, respectively. A positive association was observed between the same visual scores at weaning and yearling, with correlations ranging from 0.64 to 0.94. Estimated correlations between GBW and weaning and yearling scores ranged from 0.60 to 0.77. The genetic correlation between GBW and GWY was low (0.10), whereas correlations of 0.55, 0.37 and 0.47 were observed between GWY and CY, PY and MY, respectively. Moreover, GWY showed a weak correlation with CW (0.10), PW (-0.08) and MW (-0.03) scores. These results indicate that selection of the traits that was studied would result in a small response. In addition, selection based on average daily gain may have an indirect effect on visual scores as the correlations between GWY and visual scores were generally strong.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The total meat yield in a beef cattle production cycle is economically very important and depends on the number of calves born per year or birth season, being directly related to reproductive potential. Accumulated Productivity (ACP) is an index that expresses a cow's capacity to give birth regularly at a young age and to wean animals of greater body weight. Using data from cattle participating in the "Program for Genetic Improvement of the Nelore Breed" (PMGRN - Nelore Brasil), bi-trait analyses were performed using the Restricted Maximum Likelihood method based on an ACP animal model and the following traits: age at first calving (AFC), female body weight adjusted for 365 (BW365) and 450 (BW450) days of age, and male scrotal circumference adjusted for 365 (SC365), 450 (SC450), 550 (SC550) and 730 (SC730) days of age. Median estimated ACP heritability was 0.19 and the genetic correlations with AFC, BW365, BW450, SC365, SC450, SC550 and SC730 were 0.33, 0.70, 0.65, 0.08, 0.07, 0.12 and 0.16, respectively. ACP increased and AFC decreased over time, revealing that the selection criteria genetically improved these traits. Selection based on ACP appears to favor the heaviest females at 365 and 450 days of age who showed better reproductive performance as regards AFC. Scrotal circumference was not genetically associated with ACP. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
O mercado demanda, desde final da década de 20, uma tecnologia para a sexagem de espermatozóides que possa ser inserida na indústria de produção de sêmen congelado e que tenha as seguintes características: a) não altere a viabilidade espermática; b) seja compatível com a congelação do espermatozóide sexado; c) permita a sexagem de espermatozóides previamente congelados e descongelados; d) permita a produção de várias doses de sêmen sexado congelado por dia, com custo compatível ao mercado. A importância dessa tecnologia para maximizar a produção animal a um custo baixo tem sido um desafio da pesquisa a vários anos. A possibilidade de produzir, em escala comercial, doses de sêmen enriquecidas com espermatozóides X ou Y aumentará os benefícios do uso da inseminação artificial no seu papel de maximizar o progresso genético entre gerações de acordo com os requerimentos de cada programa de melhoramento animal. Diferentes rotas tecnológicas são percorridas na tentativa de selecionar-se o sexo em mamíferos, tanto nas espécies de interesse zootécnico quanto em espécies ameaçadas de extinção, animais de companhia. Neste sentido, existem duas alternativas: a separação de espermatozóides portadores do cromossomo X, daqueles portadores do cromossomo Y; ou a sexagem de embriões pré-implantados. A viabilidade da sexagem de espermatozóides em bovinos é esperada por muitos anos e os desenvolvimentos recentes tornaram essa tecnologia de aplicação commercial. Entretanto, muitas limitações ainda existem, principalmente, referente à taxa de gestação em condições de campo. Isso restringe a utilização dessa tecnologia no melhoramento genético e produção animal. Nessa palestra abordaremos os potenciais sistemas de criação e produção que poderão beneficiar-se com a sexagem de espermatozóides, quando essas limitações forem solucionadas.
Resumo:
Data comprising 53,181 calving records were analyzed to estimate the genetic correlation between days to calving (DC), and days to first calving (DFC), and the following traits: scrotal circumference (SC), age at first calving (AFC), and weight adjusted for 550 d of age (W550) in a Nelore herd. (Co)variance components were estimated using the REML method fitting bivariate animal models. The fixed effects considered for DC were contemporary group, month of last calving, and age at breeding season (linear and quadratic effects). Contemporary groups were composed by herd, year, season, and management group at birth; herd and management group at weaning; herd, season, and management group at mating; and sex of calf and mating type (multiple sires, single sire, or AI). In DFC analysis, the same fixed effects were considered excluding the month of last calving. For DC, a repeatability animal model was applied. Noncalvers were not considered in analyses because an attempt to include them, attributing a penalty, did not improve the identification of genetic differences between animals. Heritability estimates ranged from 0.04 to 0.06 for DC, from 0.06 to 0.13 for DFC, from 0.42 to 0.44 for SC, from 0.06 to 0.08 for AFC, and was 0.30 for W550. The genetic correlation estimated between DC and SC was low and negative (-0.10), between DC and AFC was high and positive (0.76), and between DC and W550 was almost null (0.07). Similar results were found for genetic correlation estimates between DFC and SC (-0.14), AFC (0.94), and W550 (-0.02). The genetic correlation estimates indicate that the use of DC in the selection of beef cattle may promote favorable correlated responses to age at first mating and, consequently, higher gains in sexual precocity can be expected.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)