933 resultados para Angle of air injection
Resumo:
The concept of sequential injection chromatography (SIC) was exploited to automate the fluorimetric determination of amino acids after pre-column derivatization with ophthaldialdehyde (OPA) in presence of 2-mercaptoethanol (2MCE) using a reverse phase monolithic C(18) stationary phase. The method is low-priced and based on five steps of isocratic elutions. The first step employs the mixture methanol: tetrahydrofuran: 10 mmol L(-1) phosphate buffer (pH 7.2) at the volumetric ratio of 8:1:91; the other steps use methanol: 10 mmol L-1 phosphate buffer (pH 7.2) at volumetric ratios of 20:80, 35:65, SO:SO and 65:35. At a flow rate of 10 mu L s(-1) a 25 mm long-column was able to separate aspartic acid (Asp), glutamic acid (Glu), asparagine (Asn), serine (Ser), glutamine (Gln), glycine (Gly), threonine (Thr), citruline (Ctr), arginine (Arg), alanine (Ala), tyrosine (Tyr), phenylalanine (Phe), ornithine (Orn) and lysine (Lys) with resolution >1.2 as well as methionine (Met) and valine (Val) with resolution of 0.6. Under these conditions isoleucine (Ile) and leucine (Leu) co-eluted. The entire cycle of amino acids derivatization, chromatographic separation and column conditioning at the end of separation lasted 25 min. At a flow rate of 40 mu L s(-1) such time was reduced to 10 min at the cost of resolution worsening for the pairs Ctr/Arg and Orn/Lys. The detection limits varied from 0.092 mu mol L(-1) for Tyr to 0.51 mu mol L(-1) for Orn. The method was successfully applied to the determination of intracellular free amino acids in the green alga Tetraselmis gracilis during a period of seven days of cultivation. Samples spiked with known amounts of amino acids resulted in recoveries between 94 and 112%. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The paper analyses empirical performance data of five commercial PV-plants in Germany. The purpose was on one side to investigate the weak light performance of the different PV-modules used. On the other hand it was to quantify and compare the shading losses of different PV-array configurations. The importance of this study relies on the fact that even if the behavior under weak light conditions or the shading losses might seem to be a relatively small percentage of the total yearly output; in projects where a performance guarantee is given, these variation can make the difference between meeting or not the conditions.When analyzing the data, a high dispersion was found. To reduce the optical losses and spectral effects, a series of data filters were applied based on the angle of incidence and absolute Air Mass. To compensate for the temperature effects and translate the values to STC (25°C), five different methods were assessed. At the end, the Procedure 2 of IEC 60891 was selected due to its relative simplicity, usage of mostly standard parameters found in datasheets, good accuracy even with missing values, and its potential to improve the results when the complete set of inputs is available.After analyzing the data, the weak light performance of the modules did not show a clear superiority of a certain technology or technology group over the others. Moreover, the uncertainties in the measurements restrictive the conclusiveness of the results.In the partial shading analysis, the landscape mounting of mc-Si PV-modules in free-field showed a significantly better performance than the portrait one. The cross-table string using CIGS modules did not proved the benefits expected and performed actually poorer than a regular one-string-per-table layout. Parallel substrings with CdTe showed a proper functioning and relatively low losses. Among the two product generations of CdTe analyzed, none showed a significantly better performance under partial shadings.
Resumo:
Increasing air movement over poultry by using fans (ventilation) has become an accepted means of reducing environmental heat stress over the last several years. The purpose of this study was to evaluate the effect of air velocity and exposure time to ventilation on body surface and rectal temperature of broiler chickens. Male broiler chickens aged 36-42 days were placed in individual wire cages and exposed to five different air velocities (5.7, 4.2, 3.1, 2.4, or 1.8 m/sec). Throughout the experiment head, back, leg, and rectal temperatures were monitored every 10 min during a 30-min period for each air velocity. The data showed that exposure time to the wind affected (P<.05) leg and body temperature, with a rapid reduction being observed during the first 10 min. There was a reduction in leg temperature with air velocity of 2 m/sec; however, air velocity lower than 4.5 m/sec was not effective in decreasing head and back temperature. The results suggest that air velocity of 2 m/sec, in air temperature of 29 degrees C, improves heat loss in the birds. The data also indicate that exposure time to ventilation seems to be a critical point in the maintenance of bird thermal homeostasis.
Resumo:
Background/aims: The aim of this study was to compare the morphological and visual acuity outcomes associated with a single intravitreal injection of triamcinolone acetonide versus bevacizumab for the treatment of refractory diffuse diabetic macular oedema.Methods: Twenty-eight patients were randomly assigned to receive a single intravitreal injection of either 4 mg/0.1 ml triamcinolone acetonide or 1.5 mg/0.06 ml bevacizumab. Comprehensive ophthalmic evaluation was performed at baseline and at weeks 1, 4, 8 (+/- 1), 12 (+/- 2) and 24 (+/- 2) after treatment. Main outcome measures included central macular thickness measured with optical coherence tomography (OCT) and best corrected Early Treatment Diabetic Retinopathy Study (ETDRS) visual acuity.Results: Twenty-six patients (26 eyes) completed all study visits (two patients missed two consecutive study visits). Central macular thickness was significantly reduced in the intravitreal triamcinolone group compared with the bevacizumab group at weeks 4, 8, 12 and 24 (p<0.05). Logarithm of the minimum angle of resolution (LogMAR) best-corrected visual acuity was significantly higher at weeks 8 (0.69; similar to 20/100(+1)) and 12 (0.74; 20/100(-2)) in the intravitreal triamcinolone group compared with the bevacizumab group (weeks 8 (0.83; similar to 20/125(-1)) and 12 (0.86; 20/ 160(+2))) (p<0.05). Significant change from baseline in mean intraocular pressure (mmHg) was seen at week 4 (+2.25) only in the intravitreal triamcinolone group (p<0.0001). No patient had observed cataract progression during the study.Conclusions: One single intravitreal injection of triamcinolone may offer certain advantages over bevacizumab in the short-term management of refractory diabetic macular oedema, specifically with regard to changes in central macular thickness. The actual clinical relevance of our preliminary findings, however, remains to be determined in future larger studies.
Resumo:
The jeju is a teleost fish with bimodal respiration that utilizes a modified swim bladder as an air-breathing organ (ABO). Like all air-breathing fish studied to date, jeju exhibit pronounced changes in heart rate (f(H)) during air-breathing events, and it is believed that these may facilitate oxygen uptake (M-O2) from the ABO. The current study employed power spectral analysis (PSA) of f(H) patterns, coupled with instantaneous respirometry, to investigate the autonomic control of these phenomena and their functional significance for the efficacy of air breathing. The jeju obtained less than 5% of total M-O2 (M-tO2) from air breathing in normoxia at 26 degrees C, and PSA of beat-to-beat variability in fH revealed a pattern similar to that of unimodal water-breathing fish. In deep aquatic hypoxia (water P-O2=1 kPa) the jeju increased the frequency of air breathing (f(AB)) tenfold and maintained M-tO2 unchanged from normoxia. This was associated with a significant increase in heart rate variability (HRV), each air breath (AB) being preceded by a brief bradycardia and then followed by a brief tachycardia. These f(H) changes are qualitatively similar to those associated with breathing in unimodal air-breathing vertebrates. Within 20 heartbeats after the AB, however, a beat-to-beat variability in f(H) typical of water-breathing fish was re-established. Pharmacological blockade revealed that both adrenergic and cholinergic tone increased simultaneously prior to each AB, and then decreased after it. However, modulation of inhibitory cholinergic tone was responsible for the major proportion of HRV, including the precise beat-to-beat modulation of f(H) around each AB. Pharmacological blockade of all variations in f(H) associated with air breathing in deep hypoxia did not, however, have a significant effect upon f(AB) or the regulation of M-tO2. Thus, the functional significance of the profound HRV during air breathing remains a mystery.
Resumo:
Injection-limited operation is identified in thin-film, alpha-NPD-based diodes. A detailed model for the impedance of the injection process is provided which considers the kinetics of filling/releasing of interface states as the key factor behind the injection mechanism. The injection model is able to simultaneously account for the steady-state, current-voltage (J-V) characteristics and impedance response. and is based on the sequential injection of holes mediated by energetically distributed surface states at the metal-organic interface. The model takes into account the vacuum level offset caused by the interface dipole, along with the partial shift of the interface level distribution with bias voltage. This approach connects the low-frequency (similar to 1 Hz) capacitance spectra, which exhibits a transition between positive to negative values, to the change in the occupancy of interface states with voltage. Simulations based on the model allow to derive the density of interface states effectively intervening in the carrier injection (similar to 5 x 10(12) cm(-2)), which exhibit a Gaussian-like distribution. A kinetically determined hole barrier is calculated at levels located similar to 0.4 eV below the contact work function. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this study we investigated the effects of the injection into the supraoptic nucleus (SON) of non-peptide AT1- and AT2-angiotensin II (ANG II) receptor antagonists, DuP753 and PD123319, as well as of the arginine-vasopressin (AVP) receptor antagonist d(CH2)5-Tyr(Me)-AVP, on water and 3% NaCl intake induced by the injection of ANG II into the medial septal area (MSA). The effects on water or 3% NaCl intake were assessed in 30-h water-deprived or in 20-h water-deprived furosemide-treated adult male rats, respectively. The drugs were injected in 0.5 µl over 30-60 s. Controls were injected with a similar volume of 0.15 M NaCl. Antagonists were injected at doses of 20, 80 and 180 nmol. Water and sodium intake was measured over a 2-h period. Previous administration of the AT1 receptor antagonist DuP753 into the SON decreased water (65%, N = 10, P<0.01) and sodium intake (81%, N = 8, P<0.01) induced by the injection of ANG II (10 nmol) into the MSA. Neither of these responses was significantly changed by injection of the AT2-receptor antagonist PD123319 into the SON. on the other hand, while there was a decrease in water intake (45%, N = 9, P<0.01), ANG II-induced sodium intake was significantly increased (70%, N = 8, P<0.01) following injection of the V1-type vasopressin antagonist d(CH2)5-Tyr(Me)-AVP into the SON. These results suggest that both AT1 and V1 receptors within the SON may be involved in water and sodium intake induced by the activation of ANG II receptors within the MSA. Furthermore, they do not support the involvement of MSA AT2 receptors in the mediation of these responses.
Resumo:
The study of the influence of motion and initial intra-articular pressure (IAP) on intra-articular pressure profiles in equine cadaver metatarsophalangeal (MTP) joints was undertaken as a prelude to in vivo studies, Eleven equine cadaver MTP joints were submitted to 2 motion frequencies of 5 and 10 cycles/min of flexion and extension, simulating the condition of lower and higher (double) rates of passive motion. These frequencies were applied and pressure profiles generated with initial normal intra-articular pressure (-5 mmHg) and subsequently 30 mmHg intra-articular pressure obtained by injection of previously harvested synovial fluid.The 4 trials performed were 1) normal IAP; 5 cyles/min; 2) normal IAP; 10 cycles/min; 3) IAP at 30 mmHg; 5 cycles/min and 4) IAP at 30 mmHg; 10 cycles/min. The range of joint motion applied (mean +/- s.e.) was 67.6 +/- 1.61 degrees with an excursion from 12.2 +/- 1.2 degrees in extension to 56.2 +/- 2.6 degrees in flexion, Mean pressure recorded in mmHg for the first and last min of each trial, respectively, were 1) -5.7 +/- 0.9 and -6.3 +/- 1.1; 2) -5.3 +/- 1.1 and -6.2 +/- 1.1; 3) 58.8 +/- 8.0 and 42.3 +/- 7.2; 4) 56.6 +/- 3.7 and 40.3 +/- 4.6. Statistical analyses showed a trend for difference between the values for the first and last minute in trial 3 (0.05>P<0.1) with P = 0.1 and significant difference (P = 0.02) between the mean IAP of the first and last min in trial 4. The loss of intra-articular pressure associated with time and motion was 10.5, 16.9, 28.1 and 28.9% for trials 1-4, respectively. As initial intraarticular pressure and motion increased, the percent loss of intra-articular pressure increased.The angle of lowest pressure was 12.2 +/- 1.2
Resumo:
The viscoelastic behavior of dried persimmons at different air-drying temperatures and velocities was evaluated. Air temperatures and velocities were varied according to a second-order central composite design, with temperature ranging from 40degreesC to 70degreesC and air velocity from 0.8 to 2.0 m/s. After drying, persimmons were equilibrated at four different water activities: 0.432, 0.576, 0.625 and 0.751. The rheological behavior of dried and conditioned persimmons was studied under uniaxial compression-relaxation tests. Three different rheological models were fitted to the experimental relaxation curves: Maxwell, Generalized Maxwell and Peleg and Normand. Based on the root mean square of residuals, the Generalized Maxwell model showed the best fit and a regression analysis was applied to obtain response surfaces for the model parameters. The dependence of the rheological properties on water activity was also analysed. Results showed that only the linear effect of air temperature was significant at a 5% level on the equilibrium stress and relaxation times. In a general way, these parameters increased with increasing air temperature and decreasing water activity. (C) 2004 Swiss Society of Food Science and Technology. Published by Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The role of air pollution as a health risk factor is of special interest. Numerous toxic pollutants, such as nickel, are being released to the environment as a result of combustion of fossil fuels, crude oil, and coal. Nickel in the atmosphere can be combined with other environmental pollutants, producing various nickel compounds, which have varying animal toxicity. A rat biossay validated for the identification of toxic effects of nickel revealed increased serum activities of total lactate dehydrogenase (LDH) and alanine transaminase (ALT) in rats that received intratracheal injection of Ni2+ in .09% saline solution of NiCl2. The total LDH activity was also increased in the heart, and the isoenzyme pattern showed the LDH1/LDH2 ratio elevated to greater than 1. We conclude that intratracheal administration of nickel induced cardiac and hepatic damage. The development of cardiac and hepatic damage and of increased enzymes' activities was only demonstrated when nickel had accumulated in these tissues, indicating that nickel depot is essential to its toxicity. Intratracheal administration of NiCl2 induced changes in LDH and ALT activities.
Resumo:
A calibration method was developed using flow injection analysis (FI) with a Gradient Calibration Method (GCM). The method allows the rapid determination of zinc In foods (approximately 30 min) after treatment with concentrated sulphuric acid and 30% hydrogen peroxide, and analysis with flame atomic absorption spectrometry (FAAS). The method provides analytical results with a relative standard deviation of about 2% and requires less time than by conventional FI calibration. The electronic selection of different segments along the gradient and monitoring of the technique covers wide concentration ranges while maintaining the inherent high precision of flow injection analysis. Concentrations, flow rates, and flow times of the reagents were optimized in order to obtain best accuracy and precision. Flow rates of 10 mL/min were selected for zinc. In addition, the system enables electronic dilution and calibration where a multipoint curve can be constructed using a single sample injection.
Resumo:
The São Paulo State has 36 million people, 25 million living in three metropolitan areas. Only the São Paulo Metropolitan Region (SPMR) includes the state capital (São Paulo City) plus 38 cities, where ≈ 18 million people live, affected by frequent episodes of ozone, NOx, and fine particulate matter. In 2003, it was estimated that 15.1% of the SPMR vehicles used ethanol and 70.2% used the local gasoline. Natural gas vehicles have witnessed a booming participation in the last years, mainly through conversion of gasoline cars, and the present fleet is almost one million vehicles. To face the problems generated by light vehicles emissions the Federal Government set a program called PROCONVE - Program of Air Pollution Control from Vehicles - in 1986 and since then until now a significant reduction was reached, but the growth of the fleet hides most of the emission cuts. A discussion covers the evolution of the air pollution management in São Paulo; and innovative tools for air pollution management - both for mobile and stationary sources. This is an abstract of a paper presented at the 98th AWMA Annual Conference and Exhibition (Minneapolis, MN 6/21-24/2005).
Resumo:
Currently, one of factors that cause the production cost increase of soybean crop is the pesticide application. The most important disease in soybean crop is Asian rust, caused by Phakopsora pachyrhizi Sydon & P. Sydon fungus, which can cause significant loss of the production. Therefore, this work aimed at evaluation of different spraying techniques on the spray deposits and some parameters of soybean crop: grain size, weight of 1 000 seeds and the crop productivity. Two experiments were carried out in the experimental area of FCA/UNESP (Faculdade de Ciencias Agronomicas/Universidade Estadual Paulista Julio de Mesquita Filho) - Botucatu, S P, Brazil, in soybean crop, Conquista variety, in the 2007/2008 season. In the first experiment, three air levels (0, 9 and 29 km/h of the air speed generated by fan) with flat fan nozzle XR 8002 with a spray volume of 130 l/ha were compared with a rotating nozzle - using low volume oily - LVO at 40 l/ha of spray volume. The second experiment was carried out under the same conditions as the previous experiment, including a control treatment (untreated plants). The disease severity was evaluated using a diagrammatic scale with a visual evaluation of the disease on 15 leaves of each plot. The grades varied between 0.6 and 78.5% of the disease severity. The use of air assistance when compared with the rotating system nozzle did not show significant differences for spray deposits on adaxial and abaxial surface of the leaves in bottom part of the plant. The air assistance with maximum air speed (29 km/h) increased the productivity with respect of the other treatments.