956 resultados para Amount of light
Resumo:
We report on a new experimental technique suitable for measurement of light-activated processes, such as fluorophore transport. The usefulness of this technique is derived from its capacity to decouple the imaging and activation processes, allowing fluorescent imaging of fluorophore transport at a convenient activation wavelength. We demonstrate the efficiency of this new technique in determination of the action spectrum of the light mediated transport of rhodamine 123 into the parasitic protozoan Giardia duodenalis. (c) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
The cone photoreceptors of many vertebrates contain spherical organelles called oil droplets. In birds, turtles, lizards and some lungfish the oil droplets are heavily pigmented and function to filter the spectrum of light incident upon the visual pigment within the outer segment. Pigmented oil droplets are beneficial for colour discrimination in bright light, but at lower light levels the reduction in sensitivity caused by the pigmentation increasingly outweighs the benefits generated by spectral tuning. Consequently, it is expected that species with pigmented oil droplets should modulate the density of pigment in response to ambient light intensity and thereby regulate the amount of light transmitted to the outer segment. In this study, microspectrophotometry was used to measure the absorption spectra of cone oil droplets in chickens (Gallus gallus domesticus) reared under bright (unfiltered) or dim (filtered) sunlight. Oil droplet pigmentation was found to be dependent on the intensity of the ambient light and the duration of exposure to the different lighting treatments. In adult chickens reared in bright light, the oil droplets of all cone types (except the violet-sensitive single cones, whose oil droplet is always non-pigmented) were more densely pigmented than those in chickens reared in dim light. Calculations show that the reduced levels of oil droplet pigmentation in chickens reared in dim light would increase the sensitivity and spectral bandwidth of the outer segment significantly. The density of pigmentation in the oil droplets presumably represents a trade-off between the need for good colour discrimination and absolute sensitivity. This might also explain why nocturnal animals, or those that underwent a nocturnal phase during their evolution, have evolved oil droplets with low pigment densities or no pigmentation or have lost their oil droplets altogether.
Resumo:
Purpose: To investigate the effects of light filters on reading speed in normal and low vision due to age-related macular degeneration (AMD). Methods: Reading speed was determined for 12 subjects with normal vision and 12 subjects with non-exudative AMD using stationary lowercase nonsensical print in Times Roman font and four light filters; a yellow Corning Photochromic Filter (CPF) 450, a grey neural density (ND) filter, an individual filter obtained using the Intuitive Colorimeter® and a clear filter. Results: There was no statistically significant light filter effect on reading speed for the normal subjects. The AMD group demonstrated a statistically significant 5% average improvement in reading speed with the CPF450 compared with the other filters although some AMD subjects had improvements of 10-15%. Conclusions: Light filters obtained using the Intuitive Colorimeter® performed poorly when compared with the CPF450, ND and clear filters for both the study groups. For the AMD group, average reading speed was statistically greater with the CPF450 than the other filters, however it is questionable whether the improvement (5%) would be clinically significant. As some of the subjects with AMD had greater improvements with the CPF450 we advocate clinical assessment of light filters using existing protocols on an individual basis. © 2004 The College of Optometrists.
Resumo:
An increasing number of neuroimaging studies are concerned with the identification of interactions or statistical dependencies between brain areas. Dependencies between the activities of different brain regions can be quantified with functional connectivity measures such as the cross-correlation coefficient. An important factor limiting the accuracy of such measures is the amount of empirical data available. For event-related protocols, the amount of data also affects the temporal resolution of the analysis. We use analytical expressions to calculate the amount of empirical data needed to establish whether a certain level of dependency is significant when the time series are autocorrelated, as is the case for biological signals. These analytical results are then contrasted with estimates from simulations based on real data recorded with magnetoencephalography during a resting-state paradigm and during the presentation of visual stimuli. Results indicate that, for broadband signals, 50-100 s of data is required to detect a true underlying cross-correlations coefficient of 0.05. This corresponds to a resolution of a few hundred milliseconds for typical event-related recordings. The required time window increases for narrow band signals as frequency decreases. For instance, approximately 3 times as much data is necessary for signals in the alpha band. Important implications can be derived for the design and interpretation of experiments to characterize weak interactions, which are potentially important for brain processing.
Resumo:
Background: As light-emitting diodes become more common as the light source for low vision aids, the effect of illumination colour temperature on magnifier reading performance was investigated. Methods: Reading ability (maximum reading speed, critical print size, threshold near visual acuity) using Radner charts and subjective preference was assessed for 107 participants with visual impairment using three stand magnifiers with light emitting diode illumination colour temperatures of 2,700 K, 4,500 K and 6,000 K. The results were compared with distance visual acuity, prescribed magnification, age and the primary cause of visual impairment. Results: Reading speed, critical print size and near visual acuity were unaffected by illumination colour temperature (p > 0.05). Reading metrics decreased with worsening acuity and higher levels of prescribed magnification but acuity was unaffected by age. Each colour temperature was preferred and disliked by a similar number of patients and was unrelated to distance visual acuity, prescribed magnification and age (p > 0.05). Patients had better near acuity (p = 0.002), critical print size (p = 0.034) and maximum reading speed (p <0.001), and the improvement in near from distance acuity was greater (p = 0.004) with their preferred rather than least-liked colour temperature illumination. Conclusion: A range of colour temperature illuminations should be offered to all visually impaired individuals prescribed with an optical magnifier for near tasks to optimise subjective and objective benefits.
Resumo:
The present work describes the development of a proton induced X-ray emission (PIXE) analysis system, especially designed and builtfor routine quantitative multi-elemental analysis of a large number of samples. The historical and general developments of the analytical technique and the physical processes involved are discussed. The philosophy, design, constructional details and evaluation of a versatile vacuum chamber, an automatic multi-sample changer, an on-demand beam pulsing system and ion beam current monitoring facility are described.The system calibration using thin standard foils of Si, P, S,Cl, K, Ca, Ti, V, Fe, Cu, Ga, Ge, Rb, Y and Mo was undertaken at proton beam energies of 1 to 3 MeV in steps of 0.5 MeV energy and compared with theoretical calculations. An independent calibration check using bovine liver Standard Reference Material was performed. The minimum detectable limits have been experimentally determined at detector positions of 90° and 135° with respect to the incident beam for the above range of proton energies as a function of atomic number Z. The system has detection limits of typically 10- 7 to 10- 9 g for elements 14
Resumo:
William J. Hausman, Peter Hertner, and Mira Wilkins. Global Electrification: Multinational Enterprise and International Finance in the History of Light and Power, 1878–2007. New York: Cambridge University Press, 2008. xxiv + 487 pp. ISBN 978-0-521-88035-0, $80 (hardcover).
Resumo:
It is shown theoretically that an optical bottle resonator with a nanoscale radius variation can perform a multinanosecond long dispersionless delay of light in a nanometer-order bandwidth with minimal losses. Experimentally, a 3 mm long resonator with a 2.8 nm deep semiparabolic radius variation is fabricated from a 19??µm radius silica fiber with a subangstrom precision. In excellent agreement with theory, the resonator exhibits the impedance-matched 2.58 ns (3 bytes) delay of 100 ps pulses with 0.44??dB/ns intrinsic loss. This is a miniature slow light delay line with the record large delay time, record small transmission loss, dispersion, and effective speed of light.