980 resultados para Amorphous materials


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Continuum mechanics provides a mathematical framework for modelling the physical stresses experienced by a material. Recent studies show that physical stresses play an important role in a wide variety of biological processes, including dermal wound healing, soft tissue growth and morphogenesis. Thus, continuum mechanics is a useful mathematical tool for modelling a range of biological phenomena. Unfortunately, classical continuum mechanics is of limited use in biomechanical problems. As cells refashion the �bres that make up a soft tissue, they sometimes alter the tissue's fundamental mechanical structure. Advanced mathematical techniques are needed in order to accurately describe this sort of biological `plasticity'. A number of such techniques have been proposed by previous researchers. However, models that incorporate biological plasticity tend to be very complicated. Furthermore, these models are often di�cult to apply and/or interpret, making them of limited practical use. One alternative approach is to ignore biological plasticity and use classical continuum mechanics. For example, most mechanochemical models of dermal wound healing assume that the skin behaves as a linear viscoelastic solid. Our analysis indicates that this assumption leads to physically unrealistic results. In this thesis we present a novel and practical approach to modelling biological plasticity. Our principal aim is to combine the simplicity of classical linear models with the sophistication of plasticity theory. To achieve this, we perform a careful mathematical analysis of the concept of a `zero stress state'. This leads us to a formal de�nition of strain that is appropriate for materials that undergo internal remodelling. Next, we consider the evolution of the zero stress state over time. We develop a novel theory of `morphoelasticity' that can be used to describe how the zero stress state changes in response to growth and remodelling. Importantly, our work yields an intuitive and internally consistent way of modelling anisotropic growth. Furthermore, we are able to use our theory of morphoelasticity to develop evolution equations for elastic strain. We also present some applications of our theory. For example, we show that morphoelasticity can be used to obtain a constitutive law for a Maxwell viscoelastic uid that is valid at large deformation gradients. Similarly, we analyse a morphoelastic model of the stress-dependent growth of a tumour spheroid. This work leads to the prediction that a tumour spheroid will always be in a state of radial compression and circumferential tension. Finally, we conclude by presenting a novel mechanochemical model of dermal wound healing that takes into account the plasticity of the healing skin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This guide explains how copyright law applies to Australian government material, how copyright can be managed to facilitate beneficial open access practices by government, how CC licenses can be used to achieve open access to government material, and provides practical step-by-step guidance for agencies and their officers on licensing and use of government copyright materials under CC 3.0 Australia licences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

User needs and wants dictate the way in which products are designed, produced, used and disposed of. Western society in particular has become very consumer driven and the waste resulting from such activity has the potential to be disastrous. The creation of emotional attachment with possessions is one way of approaching sustainable consumer-product relationships. The aim of this research was to gain a deeper understanding of the interaction and emotional attachment that consumers have and develop with their products. It outlines literature relating to consumer emotion and experience in relation to products, and how pleasurable product user relationships can be prolonged. It is evident from the literature that the roles of materials in the emotional attachment consumers have with products needed to be further explored. A study was conducted to determine consumers. concepts of six materials currently used in product design. This involved participants being given a Concept Prompt Probe with textual prompts to assist in discussion about the materials in question. The discussions between the 15 participant groups of two people, one male and one female, were then transcribed and coded ready for analysis. The study findings demonstrate consumers. concepts of the six materials. The findings show both physical and emotional consumer concepts of the materials. It is, however, the interaction of these concepts that is the most significant finding of this research. Each material concept is not only judged emotionally by consumers in its own right but in relation to other concepts as well. The interaction of the consumers. concepts of materials can considerably effect the emotional judgement made about the material and the appropriateness of its application. This research makes a significant contribution to knowledge regarding the effect materials have on the consumers by identifying how materials can prompt emotional judgements and thereby alter the product user experience.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The idealised theory for the quasi-static flow of granular materials which satisfy the Coulomb-Mohr hypothesis is considered. This theory arises in the limit that the angle of internal friction approaches $\pi/2$, and accordingly these materials may be referred to as being `highly frictional'. In this limit, the stress field for both two-dimensional and axially symmetric flows may be formulated in terms of a single nonlinear second order partial differential equation for the stress angle. To obtain an accompanying velocity field, a flow rule must be employed. Assuming the non-dilatant double-shearing flow rule, a further partial differential equation may be derived in each case, this time for the streamfunction. Using Lie symmetry methods, a complete set of group-invariant solutions is derived for both systems, and through this process new exact solutions are constructed. Only a limited number of exact solutions for gravity driven granular flows are known, so these results are potentially important in many practical applications. The problem of mass flow through a two-dimensional wedge hopper is examined as an illustration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly (lactide-co-glycolide) (PLGA) microspheres have been used for regenerative medicine due to their ability for drug delivery and generally good biocompatibility, but they lack adequate bioactivity for bone repair application. CaSiO3 (CS) has been proposed as a new class of material suitable for bone tissue repair due to its excellent bioactivity. In this study, we set out to incorporate CS into PLGA microspheres to investigate how the phase structure (amorphous and crystal) of CS influences the in vitro and in vivo bioactivity of the composite microspheres, with a view to the application for bone regeneration. X-ray diffraction (XRD), N2 adsorption-desorption analysis and scanning electron microscopy (SEM) were used to analyze the phase structure, surface area/pore volume, and microstructure of amorphous CS (aCS) and crystal CS (cCS), as well as their composite microspheres. The in vitro bioactivity of aCS and cCS – PLGA microspheres was evaluated by investigating their apatite-mineralization ability in simulated body fluids (SBF) and the viability of human bone mesenchymal stem cells (BMSCs). The in vivo bioactivity was investigated by measuring their de novo bone-formation ability. The results showed that the incorporation of both aCS and cCS enhanced the in vitro and in vivo bioactivity of PLGA microspheres. cCS/PLGA microspheres improved better in vitro BMSC viability and de novo bone-formation ability in vivo, compared to aCS/PLGA microspheres. Our study indicates that controlling the phase structure of CS is a promising method to modulate the bioactivity of polymer microsphere system for potential bone tissue regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(styrene)-block-poly(ethylene oxide) copolymers synthesized via the combination of reversible addition fragmentation chain transfer (RAFT) polymerization and hetero Diels–Alder (HDA) cycloaddition can be cleaved in the solid state by a retro-HDA reaction occurring at 90 °C. Nanoporous films can be prepared from these polymers using a simple heating and washing procedure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microwave heating technology is a cost-effective alternative way for heating and curing of used in polymer processing of various alternate materials. The work presented in this paper addresses the attempts made by the authors to study the glass transition temperature and curing of materials such as casting resins R2512, R2515 and laminating resin GPR 2516 in combination with two hardeners ADH 2403 and ADH 2409. The magnetron microwave generator used in this research is operating at a frequency of 2.45 GHz with a hollow rectangular waveguide. During this investigation it has been noted that microwave heated mould materials resulted with higher glass transition temperatures and better microstructure. It also noted that Microwave curing resulted in a shorter curing time to reach the maximum percentage cure. From this study it can be concluded that microwave technology can be efficiently and effectively used to cure new generation alternate polymer materials for manufacture of injection moulds in a rapid and efficient manner. Microwave curing resulted in a shorter curing time to reach the maximum percentage cure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Queensland University of Technology (QUT) allows the presentation of a thesis for the Degree of Doctor of Philosophy in the format of published or submitted papers, where such papers have been published, accepted or submitted during the period of candidature. This thesis is composed of Seven published/submitted papers and one poster presentation, of which five have been published and the other two are under review. This project is financially supported by the QUTPRA Grant. The twenty-first century started with the resurrection of lignocellulosic biomass as a potential substitute for petrochemicals. Petrochemicals, which enjoyed the sustainable economic growth during the past century, have begun to reach or have reached their peak. The world energy situation is complicated by political uncertainty and by the environmental impact associated with petrochemical import and usage. In particular, greenhouse gasses and toxic emissions produced by petrochemicals have been implicated as a significant cause of climate changes. Lignocellulosic biomass (e.g. sugarcane biomass and bagasse), which potentially enjoys a more abundant, widely distributed, and cost-effective resource base, can play an indispensible role in the paradigm transition from fossil-based to carbohydrate-based economy. Poly(3-hydroxybutyrate), PHB has attracted much commercial interest as a plastic and biodegradable material because some its physical properties are similar to those of polypropylene (PP), even though the two polymers have quite different chemical structures. PHB exhibits a high degree of crystallinity, has a high melting point of approximately 180°C, and most importantly, unlike PP, PHB is rapidly biodegradable. Two major factors which currently inhibit the widespread use of PHB are its high cost and poor mechanical properties. The production costs of PHB are significantly higher than for plastics produced from petrochemical resources (e.g. PP costs $US1 kg-1, whereas PHB costs $US8 kg-1), and its stiff and brittle nature makes processing difficult and impedes its ability to handle high impact. Lignin, together with cellulose and hemicellulose, are the three main components of every lignocellulosic biomass. It is a natural polymer occurring in the plant cell wall. Lignin, after cellulose, is the most abundant polymer in nature. It is extracted mainly as a by-product in the pulp and paper industry. Although, traditionally lignin is burnt in industry for energy, it has a lot of value-add properties. Lignin, which to date has not been exploited, is an amorphous polymer with hydrophobic behaviour. These make it a good candidate for blending with PHB and technically, blending can be a viable solution for price and reduction and enhance production properties. Theoretically, lignin and PHB affect the physiochemical properties of each other when they become miscible in a composite. A comprehensive study on structural, thermal, rheological and environmental properties of lignin/PHB blends together with neat lignin and PHB is the targeted scope of this thesis. An introduction to this research, including a description of the research problem, a literature review and an account of the research progress linking the research papers is presented in Chapter 1. In this research, lignin was obtained from bagasse through extraction with sodium hydroxide. A novel two-step pH precipitation procedure was used to recover soda lignin with the purity of 96.3 wt% from the black liquor (i.e. the spent sodium hydroxide solution). The precipitation process is presented in Chapter 2. A sequential solvent extraction process was used to fractionate the soda lignin into three fractions. These fractions, together with the soda lignin, were characterised to determine elemental composition, purity, carbohydrate content, molecular weight, and functional group content. The thermal properties of the lignins were also determined. The results are presented and discussed in Chapter 2. On the basis of the type and quantity of functional groups, attempts were made to identify potential applications for each of the individual lignins. As an addendum to the general section on the development of composite materials of lignin, which includes Chapters 1 and 2, studies on the kinetics of bagasse thermal degradation are presented in Appendix 1. The work showed that distinct stages of mass losses depend on residual sucrose. As the development of value-added products from lignin will improve the economics of cellulosic ethanol, a review on lignin applications, which included lignin/PHB composites, is presented in Appendix 2. Chapters 3, 4 and 5 are dedicated to investigations of the properties of soda lignin/PHB composites. Chapter 3 reports on the thermal stability and miscibility of the blends. Although the addition of soda lignin shifts the onset of PHB decomposition to lower temperatures, the lignin/PHB blends are thermally more stable over a wider temperature range. The results from the thermal study also indicated that blends containing up to 40 wt% soda lignin were miscible. The Tg data for these blends fitted nicely to the Gordon-Taylor and Kwei models. Fourier transform infrared spectroscopy (FT-IR) evaluation showed that the miscibility of the blends was because of specific hydrogen bonding (and similar interactions) between reactive phenolic hydroxyl groups of lignin and the carbonyl group of PHB. The thermophysical and rheological properties of soda lignin/PHB blends are presented in Chapter 4. In this chapter, the kinetics of thermal degradation of the blends is studied using thermogravimetric analysis (TGA). This preliminary investigation is limited to the processing temperature of blend manufacturing. Of significance in the study, is the drop in the apparent energy of activation, Ea from 112 kJmol-1 for pure PHB to half that value for blends. This means that the addition of lignin to PHB reduces the thermal stability of PHB, and that the comparative reduced weight loss observed in the TGA data is associated with the slower rate of lignin degradation in the composite. The Tg of PHB, as well as its melting temperature, melting enthalpy, crystallinity and melting point decrease with increase in lignin content. Results from the rheological investigation showed that at low lignin content (.30 wt%), lignin acts as a plasticiser for PHB, while at high lignin content it acts as a filler. Chapter 5 is dedicated to the environmental study of soda lignin/PHB blends. The biodegradability of lignin/PHB blends is compared to that of PHB using the standard soil burial test. To obtain acceptable biodegradation data, samples were buried for 12 months under controlled conditions. Gravimetric analysis, TGA, optical microscopy, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), FT-IR, and X-ray photoelectron spectroscopy (XPS) were used in the study. The results clearly demonstrated that lignin retards the biodegradation of PHB, and that the miscible blends were more resistant to degradation compared to the immiscible blends. To obtain an understanding between the structure of lignin and the properties of the blends, a methanol-soluble lignin, which contains 3× less phenolic hydroxyl group that its parent soda lignin used in preparing blends for the work reported in Chapters 3 and 4, was blended with PHB and the properties of the blends investigated. The results are reported in Chapter 6. At up to 40 wt% methanolsoluble lignin, the experimental data fitted the Gordon-Taylor and Kwei models, similar to the results obtained soda lignin-based blends. However, the values obtained for the interactive parameters for the methanol-soluble lignin blends were slightly lower than the blends obtained with soda lignin indicating weaker association between methanol-soluble lignin and PHB. FT-IR data confirmed that hydrogen bonding is the main interactive force between the reactive functional groups of lignin and the carbonyl group of PHB. In summary, the structural differences existing between the two lignins did not manifest itself in the properties of their blends.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metallic materials exposed to oxygen-enriched atmospheres – as commonly used in the medical, aerospace, aviation and numerous chemical processing industries – represent a significant fire hazard which must be addressed during design, maintenance and operation. Hence, accurate knowledge of metallic materials flammability is required. Reduced gravity (i.e. space-based) operations present additional unique concerns, where the absence of gravity must also be taken into account. The flammability of metallic materials has historically been quantified using three standardised test methods developed by NASA, ASTM and ISO. These tests typically involve the forceful (promoted) ignition of a test sample (typically a 3.2 mm diameter cylindrical rod) in pressurised oxygen. A test sample is defined as flammable when it undergoes burning that is independent of the ignition process utilised. In the standardised tests, this is indicated by the propagation of burning further than a defined amount, or „burn criterion.. The burn criterion in use at the onset of this project was arbitrarily selected, and did not accurately reflect the length a sample must burn in order to be burning independent of the ignition event and, in some cases, required complete consumption of the test sample for a metallic material to be considered flammable. It has been demonstrated that a) a metallic material.s propensity to support burning is altered by any increase in test sample temperature greater than ~250-300 oC and b) promoted ignition causes an increase in temperature of the test sample in the region closest to the igniter, a region referred to as the Heat Affected Zone (HAZ). If a test sample continues to burn past the HAZ (where the HAZ is defined as the region of the test sample above the igniter that undergoes an increase in temperature of greater than or equal to 250 oC by the end of the ignition event), it is burning independent of the igniter, and should be considered flammable. The extent of the HAZ, therefore, can be used to justify the selection of the burn criterion. A two dimensional mathematical model was developed in order to predict the extent of the HAZ created in a standard test sample by a typical igniter. The model was validated against previous theoretical and experimental work performed in collaboration with NASA, and then used to predict the extent of the HAZ for different metallic materials in several configurations. The extent of HAZ predicted varied significantly, ranging from ~2-27 mm depending on the test sample thermal properties and test conditions (i.e. pressure). The magnitude of the HAZ was found to increase with increasing thermal diffusivity, and decreasing pressure (due to slower ignition times). Based upon the findings of this work, a new burn criterion requiring 30 mm of the test sample to be consumed (from the top of the ignition promoter) was recommended and validated. This new burn criterion was subsequently included in the latest revision of the ASTM G124 and NASA 6001B international test standards that are used to evaluate metallic material flammability in oxygen. These revisions also have the added benefit of enabling the conduct of reduced gravity metallic material flammability testing in strict accordance with the ASTM G124 standard, allowing measurement and comparison of the relative flammability (i.e. Lowest Burn Pressure (LBP), Highest No-Burn Pressure (HNBP) and average Regression Rate of the Melting Interface(RRMI)) of metallic materials in normal and reduced gravity, as well as determination of the applicability of normal gravity test results to reduced gravity use environments. This is important, as currently most space-based applications will typically use normal gravity information in order to qualify systems and/or components for reduced gravity use. This is shown here to be non-conservative for metallic materials which are more flammable in reduced gravity. The flammability of two metallic materials, Inconel® 718 and 316 stainless steel (both commonly used to manufacture components for oxygen service in both terrestrial and space-based systems) was evaluated in normal and reduced gravity using the new ASTM G124-10 test standard. This allowed direct comparison of the flammability of the two metallic materials in normal gravity and reduced gravity respectively. The results of this work clearly show, for the first time, that metallic materials are more flammable in reduced gravity than in normal gravity when testing is conducted as described in the ASTM G124-10 test standard. This was shown to be the case in terms of both higher regression rates (i.e. faster consumption of the test sample – fuel), and burning at lower pressures in reduced gravity. Specifically, it was found that the LBP for 3.2 mm diameter Inconel® 718 and 316 stainless steel test samples decreased by 50% from 3.45 MPa (500 psia) in normal gravity to 1.72 MPa (250 psia) in reduced gravity for the Inconel® 718, and 25% from 3.45 MPa (500 psia) in normal gravity to 2.76 MPa (400 psia) in reduced gravity for the 316 stainless steel. The average RRMI increased by factors of 2.2 (27.2 mm/s in 2.24 MPa (325 psia) oxygen in reduced gravity compared to 12.8 mm/s in 4.48 MPa (650 psia) oxygen in normal gravity) for the Inconel® 718 and 1.6 (15.0 mm/s in 2.76 MPa (400 psia) oxygen in reduced gravity compared to 9.5 mm/s in 5.17 MPa (750 psia) oxygen in normal gravity) for the 316 stainless steel. Reasons for the increased flammability of metallic materials in reduced gravity compared to normal gravity are discussed, based upon the observations made during reduced gravity testing and previous work. Finally, the implications (for fire safety and engineering applications) of these results are presented and discussed, in particular, examining methods for mitigating the risk of a fire in reduced gravity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some minerals are colloidal and show no X-ray diffraction patterns. Vibrational spectroscopy offers one of the few methods for the assessment of the structure of these types of mineral. Among this group of minerals is pitticite simply described as Fe, AsO4, SO4, H2O. The objective of this research is to determine the molecular structure of the mineral pitticite using vibrational spectroscopy. Raman microscopy offers a useful method for the analysis of such colloidal minerals. Raman and infrared bands are attributed to the , and water stretching vibrations. The Raman spectrum is dominated by a very intense sharp band at 983 cm−1 assigned to the symmetric stretching mode. A strong Raman band at 1041 cm−1 is observed and is assigned to the antisymmetric stretching mode. Low intensity Raman bands at 757 and 808 cm−1 may be assigned to the antisymmetric and symmetric stretching modes. Raman bands observed at 432 and 465 cm−1 are attributable to the doubly degenerate ν2(SO4)2- bending mode.