966 resultados para Alzheimer Disease.
Resumo:
In order to understand relationships between executive and structural deficits in the frontal cortex of patients within normal aging or Alzheimer's disease, we studied frontal pathological changes in young and old controls compared to cases with sporadic (AD) or familial Alzheimer's disease (FAD). We performed a semi-automatic computer assisted analysis of the distribution of beta-amyloid (Abeta) deposits revealed by Abeta immunostaining as well as of neurofibrillary tangles (NFT) revealed by Gallyas silver staining in Brodman areas 10 (frontal polar), 12 (ventro-infero-median) and 24 (anterior cingular), using tissue samples from 5 FAD, 6 sporadic AD and 10 control brains. We also performed densitometric measurements of glial fibrillary acidic protein, principal compound of intermediate filaments of astrocytes, and of phosphorylated neurofilament H and M epitopes in areas 10 and 24. All regions studied seem almost completely spared in normal old controls, with only the oldest ones exhibiting a weak percentage of beta-amyloid deposit and hardly any NFT. On the contrary, all AD and FAD cases were severely damaged as shown by statistically significant increased percentages of beta-amyloid deposit, as well as by a high number of NFT. FAD cases (all from the same family) had statistically more beta-amyloid and GFAP than sporadic AD cases in both areas 10 and 24 and statistically more NFT only in area 24. The correlation between the percentage of beta-amyloid and the number of NFT was significant only for area 24. Altogether, these data suggest that the frontal cortex can be spared by AD type lesions in normal aging, but is severely damaged in sporadic and still more in familial Alzheimer's disease. The frontal regions appear to be differentially vulnerable, with area 12 having the less amyloid burden, area 24 the less NFT and area 10 having both more amyloid and more NFT. This pattern of damage in frontal regions may represent a strong neuroanatomical support for the deterioration of attention and cognitive capacities as well as for the presence of emotional and behavioral troubles in AD patients.
Resumo:
Epidemiological and biochemical studies show that the sporadic forms of Alzheimer's disease (AD) are characterized by the following hallmarks: (a) An exponential increase with age; (b) Selective neuronal vulnerability; (c) Inverse cancer comorbidity. The present article appeals to these hallmarks to evaluate and contrast two competing models of AD: the amyloid hypothesis (a neuron-centric mechanism) and the Inverse Warburg hypothesis (a neuron-astrocytic mechanism). We show that these three hallmarks of AD conflict with the amyloid hypothesis, but are consistent with the Inverse Warburg hypothesis, a bioenergetic model which postulates that AD is the result of a cascade of three events-mitochondrial dysregulation, metabolic reprogramming (the Inverse Warburg effect), and natural selection. We also provide an explanation for the failures of the clinical trials based on amyloid immunization, and we propose a new class of therapeutic strategies consistent with the neuroenergetic selection model.
Resumo:
Machine learning and pattern recognition methods have been used to diagnose Alzheimer's disease (AD) and mild cognitive impairment (MCI) from individual MRI scans. Another application of such methods is to predict clinical scores from individual scans. Using relevance vector regression (RVR), we predicted individuals' performances on established tests from their MRI T1 weighted image in two independent data sets. From Mayo Clinic, 73 probable AD patients and 91 cognitively normal (CN) controls completed the Mini-Mental State Examination (MMSE), Dementia Rating Scale (DRS), and Auditory Verbal Learning Test (AVLT) within 3months of their scan. Baseline MRI's from the Alzheimer's disease Neuroimaging Initiative (ADNI) comprised the other data set; 113 AD, 351 MCI, and 122 CN subjects completed the MMSE and Alzheimer's Disease Assessment Scale-Cognitive subtest (ADAS-cog) and 39 AD, 92 MCI, and 32 CN ADNI subjects completed MMSE, ADAS-cog, and AVLT. Predicted and actual clinical scores were highly correlated for the MMSE, DRS, and ADAS-cog tests (P<0.0001). Training with one data set and testing with another demonstrated stability between data sets. DRS, MMSE, and ADAS-Cog correlated better than AVLT with whole brain grey matter changes associated with AD. This result underscores their utility for screening and tracking disease. RVR offers a novel way to measure interactions between structural changes and neuropsychological tests beyond that of univariate methods. In clinical practice, we envision using RVR to aid in diagnosis and predict clinical outcome.
Resumo:
The Iowa Department of Elder Affairs, in collaboration with the University of Iowa College of Nursing, has been engaged in developing and evaluating community based services for persons with dementia in the state of Iowa over the past 7 years under a grant form the Administration on Aging. This grant tested out several models of care (dementia nurse care manager, memory loss nurse specialist, “People Living Alone Need Support” (PLANS), varying models of respite care), surveyed agencies and service providers in regard to how they provide services for persons with dementia, and provided training to case management, community college instructors, adult day service providers and other related services providers including assisted living and nursing home facilities.
Resumo:
Following an overview of the history of the task force and background information on Alzheimer’s disease, the report is divided into four sections. These sections correspond to the delineation of four subcommittees into which task force members were divided. It should be noted that the term “Alzheimer’s Disease is used to encompass not only Alzheimer’s disease but also additional brain disorders such as vascular dementia, mixed dementia, mild cognitive impairment, dementia with Lewy bodies, and other types of dementia. Interspersed throughout the report are verbatim comments received from Iowans who responded to on-line surveys about how Alzheimer’s disease has affected their lives. Their words poignantly give voice to the emotions, frustrations, and hopes of Iowans who are personally experiencing the impact of Alzheimer’s disease. The Report includes 22 recommendations to the Iowa General Assembly designed to improve the availability and quality of services for people with dementia, their caregivers, and their families. The recommendations fall into four categories; a) Education and Training; b) Services and Housing; c) Wellness and Disease Management; and, d) Funding and Reimbursement.
Resumo:
INTRODUCTION: Interindividual variations in regional structural properties covary across the brain, thus forming networks that change as a result of aging and accompanying neurological conditions. The alterations of superficial white matter (SWM) in Alzheimer's disease (AD) are of special interest, since they follow the AD-specific pattern characterized by the strongest neurodegeneration of the medial temporal lobe and association cortices. METHODS: Here, we present an SWM network analysis in comparison with SWM topography based on the myelin content quantified with magnetization transfer ratio (MTR) for 39 areas in each hemisphere in 15 AD patients and 15 controls. The networks are represented by graphs, in which nodes correspond to the areas, and edges denote statistical associations between them. RESULTS: In both groups, the networks were characterized by asymmetrically distributed edges (predominantly in the left hemisphere). The AD-related differences were also leftward. The edges lost due to AD tended to connect nodes in the temporal lobe to other lobes or nodes within or between the latter lobes. The newly gained edges were mostly confined to the temporal and paralimbic regions, which manifest demyelination of SWM already in mild AD. CONCLUSION: This pattern suggests that the AD pathological process coordinates SWM demyelination in the temporal and paralimbic regions, but not elsewhere. A comparison of the MTR maps with MTR-based networks shows that although, in general, the changes in network architecture in AD recapitulate the topography of (de)myelination, some aspects of structural covariance (including the interhemispheric asymmetry of networks) have no immediate reflection in the myelination pattern.
Resumo:
In adult mammals, neural progenitors located in the dentate gyrus retain their ability to generate neurons and glia throughout lifetime. In rodents, increased production of new granule neurons is associated with improved memory capacities, while decreased hippocampal neurogenesis results in impaired memory performance in several memory tasks. In mouse models of Alzheimer's disease, neurogenesis is impaired and the granule neurons that are generated fail to integrate existing networks. Thus, enhancing neurogenesis should improve functional plasticity in the hippocampus and restore cognitive deficits in these mice. Here, we performed a screen of transcription factors that could potentially enhance adult hippocampal neurogenesis. We identified Neurod1 as a robust neuronal determinant with the capability to direct hippocampal progenitors towards an exclusive granule neuron fate. Importantly, Neurod1 also accelerated neuronal maturation and functional integration of new neurons during the period of their maturation when they contribute to memory processes. When tested in an APPxPS1 mouse model of Alzheimer's disease, directed expression of Neurod1 in cycling hippocampal progenitors conspicuously reduced dendritic spine density deficits on new hippocampal neurons, to the same level as that observed in healthy age-matched control animals. Remarkably, this population of highly connected new neurons was sufficient to restore spatial memory in these diseased mice. Collectively our findings demonstrate that endogenous neural stem cells of the diseased brain can be manipulated to become new neurons that could allow cognitive improvement.
Resumo:
Today, Alzheimer's disease (AD) is one of the most important age-related neurodegenerative diseases, but its etiology remains still unknown. Since the discovery that the hallmark structures of this disease i.e. the formation of amyloid fibers could be the product of ubiquitin-mediated protein degradation defects, it has become clear that the ubiquitin-proteasome system (UPS), usually essential for protein repair, turnover and degradation, is perturbed in this disease. Different aspects of normal and pathological aging are discussed with respect to protein repair and degradation via the UPS, as well as consequences of a deficit in the UPS in AD. Selective protein oxidation may cause protein damage, or protein mutations may induce a dysfunction of the proteasome. Such events eventually lead to activation of cell death pathways and to an aberrant aggregation or incorporation of ubiquitinated proteins into hallmark structures. Aggresome formation is also observed in other neurodegenerative diseases, suggesting that an activation of similar mechanisms must occur in neurodegeneration as a basic phenomenon. It is essential to discuss therapeutic ways to investigate the UPS dysfunction in the human brain and to identify specific targets to hold or stop cell decay.
Resumo:
The postsynaptic density protein PSD-95 is a major element of synapses. PSD-95 is involved in aging, Alzheimer's disease (AD) and numerous psychiatric disorders. However, contradictory data about PSD-95 expression in aging and AD have been reported. Indeed in AD versus control brains PSD-95 varies according to regions, increasing in the frontal cortex, at least in a primary stage, and decreasing in the temporal cortex. In contrast, in transgenic mouse models of aging and AD PSD-95 expression is decreased, in behaviorally aged impaired versus unimpaired rodents it can decrease or increase and finally, it is increased in rodents grown in enriched environments. Different factors explain these contradictory results in both animals and humans, among others concomitant psychiatric endophenotypes, such as depression. The possible involvement of PSD-95 in reactive and/or compensatory mechanisms during AD progression is underscored, at least before the occurrence of important synaptic elimination. Thus, in AD but not in AD transgenic mice, enhanced expression might precede the diminution commonly observed in advanced aging. A two-compartments cell model, separating events taking place in cell bodies and synapses, is presented. Overall these data suggest that AD research will progress by untangling pathological from protective events, a prerequisite for effective therapeutic strategies.
Resumo:
Recently graph theory and complex networks have been widely used as a mean to model functionality of the brain. Among different neuroimaging techniques available for constructing the brain functional networks, electroencephalography (EEG) with its high temporal resolution is a useful instrument of the analysis of functional interdependencies between different brain regions. Alzheimer's disease (AD) is a neurodegenerative disease, which leads to substantial cognitive decline, and eventually, dementia in aged people. To achieve a deeper insight into the behavior of functional cerebral networks in AD, here we study their synchronizability in 17 newly diagnosed AD patients compared to 17 healthy control subjects at no-task, eyes-closed condition. The cross-correlation of artifact-free EEGs was used to construct brain functional networks. The extracted networks were then tested for their synchronization properties by calculating the eigenratio of the Laplacian matrix of the connection graph, i.e., the largest eigenvalue divided by the second smallest one. In AD patients, we found an increase in the eigenratio, i.e., a decrease in the synchronizability of brain networks across delta, alpha, beta, and gamma EEG frequencies within the wide range of network costs. The finding indicates the destruction of functional brain networks in early AD.
Resumo:
Alzheimer's disease (AD) disrupts functional connectivity in distributed cortical networks. We analyzed changes in the S-estimator, a measure of multivariate intraregional synchronization, in electroencephalogram (EEG) source space in 15 mild AD patients versus 15 age-matched controls to evaluate its potential as a marker of AD progression. All participants underwent 2 clinical evaluations and 2 EEG recording sessions on diagnosis and after a year. The main effect of AD was hyposynchronization in the medial temporal and frontal regions and relative hypersynchronization in posterior cingulate, precuneus, cuneus, and parietotemporal cortices. However, the S-estimator did not change over time in either group. This result motivated an analysis of rapidly progressing AD versus slow-progressing patients. Rapidly progressing AD patients showed a significant reduction in synchronization with time, manifest in left frontotemporal cortex. Thus, the evolution of source EEG synchronization over time is correlated with the rate of disease progression and should be considered as a cost-effective AD biomarker.
Resumo:
Assuming selective vulnerability of short association U-fibers in early Alzheimer's disease (AD), we quantified demyelination of the surface white matter (dSWM) with magnetization transfer ratio (MTR) in 15 patients (Clinical Dementia Rating Scale [CDR] 0.5-1; Functional Assessment Staging [FAST]: 3-4) compared with 15 controls. MTRs were computed for 39 areas in each hemisphere. We found a bilateral MTR decrease in the temporal, cingulate, parietal, and prefrontal areas. With linear discriminant analysis, we successfully classified all the participants with 3 variates including the cuneus, parahippocampal, and superior temporal regions of the left hemisphere. The pattern of dSWM changed with the age of AD onset. In early onset patients, we found bilateral posterior demyelination spreading to the temporal areas in the left hemisphere. The late onset patients showed a distributed bilateral pattern with the temporal and cingulate areas strongly affected. A correlation with Mini Mental State Examination (MMSE), Lexis, and memory tests revealed the dSWM impact on cognition. A specific landscape of dSWM in early AD shows the potential of MTR imaging as an in vivo biomarker superior to currently used techniques.
Resumo:
With the aging population and its rapidly increasing prevalence, dementia has become an important public health concern in developed and developing countries. To date, the pharmacological treatment is symptomatic and based on the observed neurotransmitter disturbances. The four most commonly used drugs are donepezil, galantamine, rivastigmine and memantine. Donepezil, galantamine and rivastigmine are acetylcholinesterase inhibitors with different pharmacodynamic and pharmacokinetic profiles. Donepezil inhibits selectively the acetylcholinesterase and has a long elimination half-life (t½) of 70 h. Galantamine is also a selective acetylcholinesterase inhibitor, but also modulates presynaptic nicotinic receptors. It has a t½ of 6-8 h. Donepezil and galantamine are mainly metabolised by cytochrome P450 (CYP) 2D6 and CYP3A4 in the liver. Rivastigmine is a so-called 'pseudo-irreversible' inhibitor of acetylcholinesterase and butyrylcholinesterase. The t½ of the drug is very short (1-2 h), but the duration of action is longer as the enzymes are blocked for around 8.5 and 3.5 h, respectively. Rivastigmine is metabolised by esterases in liver and intestine. Memantine is a non-competitive low-affinity antagonist of the NMDA receptor with a t½ of 70 h. Its major route of elimination is unchanged via the kidneys. Addressing the issue of inter-patient variability in treatment response might be of special importance for the vulnerable population taking anti-dementia drugs. Pharmacogenetic considerations might help to avoid multiple medication changes due to non-response and/or adverse events. Some pharmacogenetic studies conducted on donepezil and galantamine reported an influence of the CYP2D6 genotype on the pharmacokinetics of the drugs and/or on the response to treatment. Moreover, polymorphisms in genes of the cholinergic markers acetylcholinesterase, butyrylcholinesterase, choline acetyltransferase and paraoxonase were found to be associated with better clinical response to acetylcholinesterase inhibitors. However, confirmation studies in larger populations are necessary to establish evidence of which subgroups of patients will most likely benefit from anti-dementia drugs. The aim of this review is to summarize the pharmacodynamics and pharmacokinetics of the four commonly used anti-dementia drugs and to give an overview on the current knowledge of pharmacogenetics in this field.
Resumo:
ABSTRACT: INTRODUCTION: Lipoprotein-associated phospholipase A2 (Lp-PLA2) is a circulating enzyme with pro-inflammatory and oxidative activities associated with cardiovascular disease and ischemic stroke. While high plasma Lp-PLA2 activity was reported as a risk factor for dementia in the Rotterdam study, no association between Lp-PLA2 mass and dementia or Alzheimer's disease (AD) was detected in the Framingham study. The objectives of the current study were to explore the relationship of plasma Lp-PLA2 activity with cognitive diagnoses (AD, amnestic mild cognitive impairment (aMCI), and cognitively healthy subjects), cardiovascular markers, cerebrospinal fluid (CSF) markers of AD, and apolipoprotein E (APOE) genotype. METHODS: Subjects with mild AD (n = 78) and aMCI (n = 59) were recruited from the Memory Clinic, University Hospital, Basel, Switzerland; cognitively healthy subjects (n = 66) were recruited from the community. Subjects underwent standardised medical, neurological, neuropsychological, imaging, genetic, blood and CSF evaluation. Differences in Lp-PLA2 activity between the cognitive diagnosis groups were tested with ANOVA and in multiple linear regression models with adjustment for covariates. Associations between Lp-PLA2 and markers of cardiovascular disease and AD were explored with Spearman's correlation coefficients. RESULTS: There was no significant difference in plasma Lp-PLA2 activity between AD (197.1 (standard deviation, SD 38.4) nmol/min/ml) and controls (195.4 (SD 41.9)). Gender, statin use and low-density lipoprotein cholesterol (LDL) were independently associated with Lp-PLA2 activity in multiple regression models. Lp-PLA2 activity was correlated with LDL and inversely correlated with high-density lipoprotein (HDL). AD subjects with APOE-ε4 had higher Lp-PLA2 activity (207.9 (SD 41.2)) than AD subjects lacking APOE-ε4 (181.6 (SD 26.0), P = 0.003) although this was attenuated by adjustment for LDL (P = 0.09). No strong correlations were detected for Lp-PLA2 activity and CSF markers of AD. CONCLUSION: Plasma Lp-PLA2 was not associated with a diagnosis of AD or aMCI in this cross-sectional study. The main clinical correlates of Lp-PLA2 activity in AD, aMCI and cognitively healthy subjects were variables associated with lipid metabolism.