959 resultados para Allium cepa L
Resumo:
C17H2602, M, = 262, triclinic, PI, a = 8.513(2), b = 8.970(2), c = 11.741(3)A, a = 120.51 (5), fl = 93.30(4), y = 68.43(4) ° , V = 708.9,/k 3, Z = 2, D O = 1.213, D e = 1.227 Mg m -a, g(Mo Ka, 2 = 0.7107 ,&) = 0.084 mm -1, F(000) = 288. The structure, solved by direct methods, has been refined to an R value of 5.9% using 1361 intensity measurements. The ring junctions, in sequence from either end of the polycycle, are cis, trans and cis.
Resumo:
Ethanol extract of whole plant of Trichosanthes cucumerina L. var. cucumerina was evaluated for antiovulatory activity in adult rats. The ethanol extract at the doses 200 and 400mg/kg body weight (orally) affected the normal estrous cycle showing a significant increase in estrus and metestrus phases and decrease in diestrus and proestrus phases. The extract also significantly reduced the number of healthy follicles (Class I-Class VI) and corpora lutea and increased the number of regressing follicles (Stage IA, Stage IB, Stage IIA, and Stage IIB). The protein and glycogen content in the ovaries were significantly reduced in treated rats. The cholesterol level was significantly increased, whereas, the enzyme activities like 3b-HSD and 17b-HSD were significantly inhibited in the ovary of treated rats. Serum FSH and LH levels were significantly reduced in the treated groups were measured by RIA. In acute toxicity test, neither mortality nor change in the behavior or any other physiological activities in mice were observed in the treated groups. In chronic toxicity studies, no mortality was recorded and there were no significant differences in the body and organ weights were observed between controls and treated rats. Hematological analysis showed no significant differences in any of the parameters examined (RBC, WBC count and Hemoglobin estimation). These observations showed the antiovulatory activity of ethanol extract of whole plant of Trichosanthes cucumerina L. var. cucumerina in female albino rats.
Resumo:
Cultivated groundnut (Arachis hypogaea L.) is an agronomically and economically important oilseed crop grown extensively throughout the semi-arid tropics of Asia, Africa and Latin America. Rust (Puccinia arachidis) and late leaf spot (LLS, Phaseoisariopsis personata) are among the major diseases causing significant yield loss in groundnut. The development of varieties with high levels of resistance has been constrained by adaptation of disease isolates to resistance sources and incomplete resistance in resistant sources. Despite the wide range of morphological diversity observed in the cultivated groundnut gene pool, molecular marker analyses have thus far been unable to detect a parallel level of genetic diversity. However, the recent development of simple sequence repeat (SSR) markers presents new opportunities for molecular diversity analysis of cultivate groundnut. The current study was conducted to identify diverse disease resistant germplasm for the development of mapping populations and for their introduction into breeding programs. Twenty-three SSRs were screened across 22 groundnut genotypes with differing levels of resistance to rust and LLS. Overall, 135 alleles across 23 loci were observed in the 22 genotypes screened. Twelve of the 23 SSRs (52%) showed a high level of polymorphism, with PIC values ≥0.5. This is the first report detecting such high levels of genetic polymorphism in cultivated groundnut. Multi-dimensional scaling and cluster analyses revealed three well-separated groups of genotypes. Locus by locus AMOVA and Kruskal-Wallis one-way ANOVA identified candidate SSR loci that may be valuable for mapping rust and LLS resistance. The molecular diversity analysis presented here provides valuable information for groundnut breeders designing strategies for incorporating and pyramiding rust and late leaf spot resistances and for molecular biologists wishing to create recombinant inbred line populations to map these traits.
Resumo:
To quantify the role of Johnson grass, Sorghum halepense, in the population dynamics of the sorghum midge, Stenodiplosis sorghicola, patterns of flowering of Johnson grass and infestation by sorghum midge were studied in two different climatic environments in the Lockyer Valley and on the Darling Downs in south-eastern Queensland for 3 years. Parasitism levels of S. sorghicola were also recorded. In the Lockyer Valley, Johnson grass panicles were produced throughout the year but on the Darling Downs none were produced between June and September. In both areas, most panicle production occurred between November and March and infestation by S. sorghicola was the greatest during this period. The parasitism levels were between 20% and 50%. After emergence from winter diapause, one to two generations of S. sorghicola developed on S. halepense before commercial grain sorghum crops were available for infestation. Parasitoids recorded were: Aprostocetus diplosidis, Eupelmus australiensis and two species of Tetrastichus. Relationships between sorghum midge population growth rate and various environmental and population variables were investigated. Population size had a significant negative effect (P < 0.0001) on population growth rate. Mortality due to parasitism showed a significant positive density response (P < 0.0001). Temperature, rainfall, open pan evaporation, degree-days and host availability showed no significant effect on population growth rate. Given the phenology of sorghum production in south-eastern Queensland, Johnson grass provides an important bridging host, sustaining one to two generations of sorghum midge. Critical studies relating population change and build-up in sorghum to sorghum midge populations in Johnson grass are yet to be performed.
Resumo:
Ethiopia is believed to be the centre of origin and domestication for sorghum, where sorghum remains one of the main staple crops. Loss of biodiversity is occurring at an alarming rate in Ethiopia and crops, including sorghum, have long been recognized as vulnerable to genetic erosion. A major collection of sorghum germplasm was made in 1973 by Gebrekidan and Ejeta from north-eastern Ethiopia. A new collection of landraces was made in 2003, and these were field evaluated at Sirinka in 2004 along with representative samples from the 1973 collection. Farmer surveys and soil and climate surveys were also performed. Preliminary analysis demonstrated that some important landraces have disappeared either locally or regionally in the past 30 years and many other landraces have become marginalized. Landraces which are less preferred in terms of agronomic value and end use, and introductions, have become increasingly important. Late maturing landraces were found to be particularly vulnerable, with a number disappearing altogether. Farmers have become more risk averse, and factors such as declining soil fertility, more frequent drought and unreliable rainfall, and increased pest infestation have contributed to a change in farmer landrace selection. Data are presented on the variability and unique characters of some of the Ethiopian landraces, and implications for conservation are discussed.
Resumo:
Liquid forms of phosphorus (P) have been shown to be more effective than granular P for promoting cereal growth in alkaline soils with high levels of free calcium carbonate on Eyre Peninsula, South Australia. However, the advantage of liquid over granular P forms of fertiliser has not been fully investigated across the wide range of soils used for grain production in Australia. A glasshouse pot experiment tested if liquid P fertilisers were more effective for growing spring wheat (Triticum aestivum L.) than granular P (monoammonium phosphate) in 28 soils from all over Australia with soil pH (H2O) ranging from 5.2 to 8.9. Application of liquid P resulted in greater shoot biomass, as measured after 4 weeks' growth (mid to late tillering, Feeks growth stage 2-3), than granular P in 3 of the acidic to neutral soils and in 3 alkaline soils. Shoot dry matter responses of spring wheat to applied liquid or granular P were related to soil properties to determine if any of the properties predicted superior yield responses to liquid P. The calcium carbonate content of soil was the only soil property that significantly contributed to predicting when liquid P was more effective than granular P. Five soil P test procedures (Bray, Colwell, resin, isotopically exchangeable P, and diffusive gradients in thin films (DGT)) were assessed to determine their ability to measure soil test P on subsamples of soil collected before the experiment started. These soil test values were then related to the dry matter shoot yields to assess their ability to predict wheat yield responses to P applied as liquid or granular P. All 5 soil test procedures provided a reasonable prediction of dry matter responses to applied P as either liquid or granular P, with the resin P test having a slightly greater predictive capacity on the range of soils tested. The findings of this investigation suggest that liquid P fertilisers do have some potential applications in non-calcareous soils and confirm current recommendations for use of liquid P fertiliser to grow cereal crops in highly calcareous soils. Soil P testing procedures require local calibration for response to the P source that is going to be used to amend P deficiency.
Resumo:
Coolamon is a mid-season to late-season flowering F4-derived crossbred subterranean clover of var. subterraneum, developed by the collaborating organisations of the National Annual Pasture Legume Improvement Program. It is a replacement for Junee and has been selected for release on the basis of its greater herbage production and persistence, and its resistance to both known races of clover scorch. Coolamon is recommended for sowing in Western Australia, New South Wales, Victoria, South Australia and Queensland. It is best suited to well-drained, moderately acidic soils in areas with a growing season of 6.5-8 months that extends into November. Coolamon is best suited to phase farming and permanent pasture systems. It can also be used in cropping rotations, but at least 2 years of pasture are required between crops. Coolamon has been granted Plant Breeders Rights in Australia.
Resumo:
Izmir is a hardseeded, early flowering, subterranean clover of var. subterraneum (Katz. et Morley) Zohary and Heller collected from Turkey and developed by the collaborating organisations of the National Annual Pasture Legume Improvement Program. It is a more hardseeded replacement for Nungarin and best suited to well-drained, moderately acidic soils in areas with a growing season of less than 4.5 months. Izmir seed production and regeneration densities in 3-year pasture phases were similar to Nungarin in 21 trials across southern Australia, but markedly greater in years following a crop or no seed set. Over all measurements, Izmir produced 10% more winter herbage and 7% more spring herbage than Nungarin. Its greater hardseededness and good seed production, makes it better suited to cropping rotations than Nungarin. Softening of Izmir hard seeds occurs later in the summer–autumn period than Nungarin, giving it slightly greater protection from seed losses following false breaks to the season. Izmir is recommended for sowing in Western Australia, New South Wales, Victoria, South Australia and Queensland. Izmir has been granted Plant Breeders Rights in Australia.
Resumo:
A new form of L-histidine L-aspartate monohydrate crystallizes in space group P22 witha = 5.131(1),b = 6.881(1),c= 18.277(2) Å,β= 97.26(1)° and Z = 2. The structure has been solved by the direct methods and refined to anR value of 0.044 for 1377 observed reflections. Both the amino acid molecules in the complex assume the energetically least favourable allowed conformation with the side chains staggered between the α-amino and α-scarboxylate groups. This results in characteristic distortions in some bond angles. The unlike molecules aggregate into alternating double layers with water molecules sandwiched between the two layers in the aspartate double layer. The molecules in each layer are arranged in a head-to-tail fashion. The aggregation pattern in the complex is fundamentally similar to that in other binary complexes involving commonly occurring L amino acids, although the molecules aggregate into single layers in them. The distribution of crystallographic (and local) symmetry elements in the old form of the complex is very different from that in the new form. So is the conformation of half the histidine molecules. Yet, the basic features of molecular aggregation, particularly the nature and the orientation of head-to-tail sequences, remain the same in both the forms. This supports the thesis that the characteristic aggregation patterns observed in crystal structures represent an intrinsic property of amino acid aggregation.
Resumo:
To improve compatibility between chemical and biological controls, the use of selective insecticides such as insect growth regulators (IGRs) is crucial. In cucurbits, the use of pyriproxyfen (an IGR) has been shown by others to be an effective method of reducing the number of sap-sucking insects, especially silverleaf whitefly, Bemisia tabaci (Gennadius) Biotype B (SLW). Therefore, we compared pyriproxyfen and buprofezin (an IGR) with that of no treatment (control) in a bitter melon crop for the control of populations of SLW and for their effects on fruit production. Pyriproxyfen controlled SLW and tended to have heavier fruits than the control treatment and reduced the abundance of nymphs and exuvia. Buprofezin showed no evidence in controlling SLW compared with the pyriproxyfen and control treatments. Neither pyriproxyfen nor buprofezin had any effect on the number of harvested fruit or overall fruit yield, but the average weight per fruit was higher than the control treatment. Pyriproxyfen was effective in controlling whitefly populations in bitter melons, and both pyriproxyfen and buprofezin may have the potential to increase yield. Their longer-term use may increase predation by natural enemies as they are species-specific and could favour build up of natural enemies of SLW. Thus, the judicious use of pyriproxyfen may provide an effective alternative to broad-spectrum insecticides in small-scale cucurbit production.
Resumo:
Parthenium is a serious problem in several tropical and sub-tropical areas around the world and particularly an emerging problem in southern Africa. It is a Weed of National Significance in Australia. The chapter summarises current knowledge about the taxonomy, biology, distribution, ecology, impacts and biological control of the weed worldwide. Queensland has led attempts to achieve biological control of parthenium since it first began foreign exploration in 1977. Since then nine insects and two rusts have been released in Queensland. Some of these have since been, or will be, used by other countries. The program has brought significant benefits to Queensland through an increase in grass biomass in some areas. Instances of non-target attack by one agent, particularly in India, are discussed with the conclusion that the effects were ultimately negligible and possibly due to parthenium pollen lodging on the leaves of non-target plants. The insects introduced for parthenium have also given a measure of control for the very closely related weeds, ragweed and Noogoora burr. The paper draws a conclusion that local climatic conditions are very important when considering whether a successful agent in one country will be useful in a second country.