952 resultados para Algal Secondary Metabolites


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Composite plants consisting of a wild-type shoot and a transgenic root are frequently used for functional genomics in legume research. Although transformation of roots using Agrobacterium rhizogenes leads to morphologically normal roots, the question arises as to whether such roots interact with arbuscular mycorrhizal (AM) fungi in the same way as wild-type roots. To address this question, roots transformed with a vector containing the fluorescence marker DsRed were used to analyse AM in terms of mycorrhization rate, morphology of fungal and plant subcellular structures, as well as transcript and secondary metabolite accumulations. Mycorrhization rate, appearance, and developmental stages of arbuscules were identical in both types of roots. Using Mt16kOLI1Plus microarrays, transcript profiling of mycorrhizal roots showed that 222 and 73 genes exhibited at least a 2-fold induction and less than half of the expression, respectively, most of them described as AM regulated in the same direction in wild-type roots. To verify this, typical AM marker genes were analysed by quantitative reverse transcription-PCR and revealed equal transcript accumulation in transgenic and wild-type roots. Regarding secondary metabolites, several isoflavonoids and apocarotenoids, all known to accumulate in mycorrhizal wild-type roots, have been found to be up-regulated in mycorrhizal in comparison with non-mycorrhizal transgenic roots. This set of data revealed a substantial similarity in mycorrhization of transgenic and wild-type roots of Medicago truncatula, validating the use of composite plants for studying AM-related effects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background Capsicum chlorosis virus (CaCV) is an emerging pathogen of capsicum, tomato and peanut crops in Australia and South-East Asia. Commercial capsicum cultivars with CaCV resistance are not yet available, but CaCV resistance identified in Capsicum chinense is being introgressed into commercial Bell capsicum. However, our knowledge of the molecular mechanisms leading to the resistance response to CaCV infection is limited. Therefore, transcriptome and expression profiling data provide an important resource to better understand CaCV resistance mechanisms. Methodology/Principal Findings We assembled capsicum transcriptomes and analysed gene expression using Illumina HiSeq platform combined with a tag-based digital gene expression system. Total RNA extracted from CaCV/mock inoculated CaCV resistant (R) and susceptible (S) capsicum at the time point when R line showed a strong hypersensitive response to CaCV infection was used in transcriptome assembly. Gene expression profiles of R and S capsicum in CaCV- and buffer-inoculated conditions were compared. None of the genes were differentially expressed (DE) between R and S cultivars when mock-inoculated, while 2484 genes were DE when inoculated with CaCV. Functional classification revealed that the most highly up-regulated DE genes in R capsicum included pathogenesis-related genes, cell death-associated genes, genes associated with hormone-mediated signalling pathways and genes encoding enzymes involved in synthesis of defense-related secondary metabolites. We selected 15 genes to confirm DE expression levels by real-time quantitative PCR. Conclusion/Significance DE transcript profiling data provided comprehensive gene expression information to gain an understanding of the underlying CaCV resistance mechanisms. Further, we identified candidate CaCV resistance genes in the CaCV-resistant C. annuum x C. chinense breeding line. This knowledge will be useful in future for fine mapping of the CaCV resistance locus and potential genetic engineering of resistance into CaCV-susceptible crops.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The demand for natural sweeteners has been gaining more and more importance due to the great controversy associated with the use of some synthetic sweeteners as cyclamates, aspartame and acesulfame-K. The steviol glycosides (E 960) are a group of natural sweeteners of generalized use; these compounds are obtained from Stevia rebaudiana Bertoni, a sweet plant native from South America (Carocho et al., 2015). However, Stevia rebaudiana Bertoni may have other uses to be exploited, in particular due to its antioxidant capacity. This plant is already produced in Portugal but it is important to evaluate if the plant chemical composition is maintained regardless of culture conditions. Therefore, in this study, stevia samples were cultivated in Braganca (northeastern of Portugal) in a field trial with defined culture conditions. After harvesting, the plants were submitted to two different treatments: kept fresh by freezing (-20°C) and oven-dried (30°C). The antioxidant profile of the samples was studied through evaluation of free radicals scavenging activity, reducing power, phenolic compounds (HPLC-DAD-ESI/MS), tocopherols (HPLC-fluorescence) and free sugars (HPLC-RI). Significant differences were observed: while oven-dried samples showed the highest antioxidant activity and phenolic compounds concentration (mainly 5-O-caffeoylquinic acid and 3,5-O-dicaffeoylquinic acid), the frozen fresh samples had the highest values of total tocopherols and total sugars. These results confirm that the plants grown in Bragança have excellent bioactive secondary metabolites responsible for the observed antioxidant capacity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Angiogenesis is a biological process through which there is the formation of new blood vessels from preexisting ones [I]. However, in pathological cases, the abnormal growth of new blood vessels promotes the development of various diseases including cancer [2) through the production of atypically large amounts of angiogenesis factors, e.g. the vascular endothelial growth factor (VEGF) [3]. The plant secondary metabolites have been the subject of several studies to evaluate their benefits to human health. In particular, the phenolic compounds have high potential for use in the food industry, including the development of functional foods. Among these, apigenin has been associated with chemopreventive effects related to cancer [4]. In fact, chemoprevention is a present-day concept and contemplates the use of medicines, biological compounds or nutrients as an intervention strategy of cancer prevention. In this work, an Arenaria montana L hydroethanolic extract was prepared and after characterization by HPLC-DAD-ESI/MS showed to be rich in apigenin derivatives. Furthermore, it exhibited ability to inhibit the phosphorylation of VEGFR-2 (vascular endothelium growth factor receptor) through an enzymatic assay. However, for the major protection of bioactive compounds, the extract was microencapsulated by an atomization/coagulation technique with alginate as the matrix material. Posteriorly, the hydroethanolic extract, in free and microencapsulated forms, was incorporated in yogurts in order to develop a novel chemopreventer food in relation to the angiogenesis process. The functionalized yogurts with A. montana extracts (free and microencapsulated) showed a nutritional value similar to the used control (yogurt without extract); however, the samples enriched with extracts revealed added-value regarding the VEGFR-2 phosphorylation inhibition ability. This effect was more effectively preserved over time in the samples functionalized with the protected extract. Overall, this work contributes to the valorization of plants rich in flavonoids, exploring its antiangiogenic potential with VEGFR-2 as target. Moreover, the atomization/coagulation technique allowed the production of viable microspheres enriched with the plant extract. The microspheres were effectively incorporated into yogurts, protecting the extract thus envisaging the development of novel functional foods with chemopreventive effects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purine ring system is one of the most widely distributed N-heterocycles in Nature [1] and many structurally modified purine nucleosides and nucleotides have activities ranging from antineoplastic and antiviral to antihypertensive, antiasthmatic, antituberculosis, etc [2]. Among the purine derivatives, we have put our attention on natural N-alkylpurines such as the asmarines or agelasimines, a group of secondary metabolites isolated from marine sponges with very interesting biological properties [3]. They have a diterpenoid moiety attached to the N-7 nitrogen atom of an adenine and are usually isolated in very small quantities, which limited their structure-activity relationship studies. Our research group has been involved for years in the design, synthesis and biological evaluation of cytotoxic compounds related to natural products, including the chemoinduction of bioactivity on inactive terpenoids [4]. These diterpenoid include compounds such as communic or cupressic acids that bear decaline moieties very close to those present in the above-mentioned marine natural products. These facts prompted us to design and prepare new terpenylpurine derivatives starting from natural monoterpenoids and diterpenoids, commercially available or isolated from their natural sources and transformed into appropriate alkylated agents. Thus, we have prepared purines alkylated at N-7 and N-9 positions with isoprenoids, monoterpenoids and diterpenoids, using two different synthetic approaches: from 6-chloropurine or from 4,5-diamine-6-chloropyrimidine. The structure of the synthesized purines are shown in the following figure. The purine analogues synthesized have been evaluated for their cytotoxicity against four tumour human cell lines (breast, non-small lung, cervical and hepatocellular carcinoma) and non-tumour cells (porcine liver primary cells). The most cytotoxic derivatives were those with a diterpenoid rest on the purine. The results obtained allowed to draw conclusions on the structure-activity relationship of the compounds in order to evaluate the influence of the terpenyl size on their cytotoxic properties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The in vitro anti-fungal activity of leaf and stem bark of Daniella oliveri Rolfe was investigated against selected yeasts and moulds including dermatophytes. Water and methanol were used to extract the powdered leaf and stem bark using cold infusion. Antimicrobial activity was assessed by agar-well diffusion. Phytochemical analysis was carried out using standard procedures. The plant extracts were active against the test organisms at concentrations ranging from 3.125-100 mg/mL. The methanol extracts were more active than the aqueous extracts with the highest inhibition against the yeasts, Candida albicans and Candida krusei (MIC values of 3.125 mg/mL and 6.25 mg/mL respectively). Epidermophyton floccosum and Trichophyton interdigitale were the least inhibited of all the fungal strains. Phytochemical screening revealed the presence of tannins, anthraquinones, flavonoids, cardiac glycosides, alkaloids and saponins. The anti-fungal activity of Daniella oliveri as shown in this study indicates that the plant has the potential of utilisation in the development of chemotherapeutic agents for the treatment of relevant fungal infections.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The particular characteristics of growth and development of mushrooms in nature result in the accumulation of a variety of secondary metabolites, several of them with biological activities. The genus Pleurotus is a cosmopolitan group of mushrooms with high nutritional value and therapeutic properties, besides a wide array of biotechnological and environmental applications. Scope and approach: The present report aims to provide a critical review on aspects related to chemical compounds isolated from the genus Pleurotus with possible biotechnological, nutritional and therapeutic uses. Investigations on the genus have immensely accelerated during the last ten years, so that only reports published after 2005 have been considered. Key findings and conclusions: The most important Pleurotus species cultivated in large scale are P. ostreatus and P. pulmonarius. However, more than 200 species have already been investigated to various degrees. Both basidiomata and mycelia of Pleurotus are a great renewable and easily accessible source of functional foods/nutraceuticals and pharmaceuticals with antioxidant, antimicrobial, anti-inflammatory, antitumor and immunomodulatory effects. A series of compounds have already been precisely defined including several polysaccharides, phenolics, terpenes and sterols. However, intensification of structure determination is highly desirable and demands considerable efforts. Further studies including clinical trials need to be carried out to ascertain the safety of these compounds as adequate alternatives to conventional drugs. Not less important is to extend the search for novel bioactives to less explored Pleurotus species.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Strawberry fruits are highly appreciated worldwide due to their pleasant flavor and aroma and to the health benefits associated to their consumption. An important part of these properties is due to their content in secondary metabolites, especially phenolic compounds, of which flavonoids are the most abundant in the strawberry fruit. Although the flavonoid biosynthesis pathway is uncovered, little is known about its regulation. The strawberry Fra a (Fra) genes constitute a large family of homologs of the major birch pollen allergen Bet v 1 and for which no equivalents exist in Arabidopsis. Our group has shown that Fra proteins are involved in the formation of colored compounds in strawberries (Muñoz et al., 2010), which mainly depends on the production of certain flavonoids; that they are structurally homologs to the PYR/PYL/RCAR Arabidopsis ABA receptor, and that they are able to bind flavonoids (Casañal et al., 2013). With these previous results, our working hypothesis is that the Fra proteins are involved in the regulation of the flavonoids pathway. They would mechanistically act as the ABA receptor, binding a protein interactor and a ligand to regulate a signaling cascade and/or act as molecular carriers. The main objective of this research is to characterize the Fra family in strawberry and gain insight into their role in the flavonoid metabolism. By RNAseq expression analysis in ripening fruits we have identified transcripts for 10 members of the Fra family. Although expressed in all tissues analyzed, each family member presents a unique pattern of expression, which suggests functional specialization for each Fra protein. Then, our next approach was to identify the proteins that interact with Fras and their ligands to gain knowledge on the role that these proteins play in the flavonoids pathway. To identify the interacting partners of Fras we have performed a yeast two hybrid (Y2H) screening against cDNA libraries of strawberry fruits at the green and red stages. A protein that shares a 95% homology to the Heat stress transcription factor A-4-C like of Fragaria vesca (HSA4C) interacts specifically with Fra1 and not with other family members, which suggests functional diversification of Fra proteins in specific signaling pathways. The Y2H screening is not yet saturated, so characterization of other interacting proteins with other members of the Fra family will shed light on the functional diversity within this gene family. This research will contribute to gain knowledge on how the flavonoid pathway, and hence, the fruit ripening, is regulated in strawberry; an economically important crop but for which basic research is still very limited. References: Muñoz, C, et al. (2010). The Strawberry Fruit Fra a Allergen Functions in Flavonoid Biosynthesis. Molecular Plant, 3(1): 113–124. Casañal, A, et al (2013). The Strawberry Pathogenesis-related 10 (PR-10) Fra a Proteins Control Flavonoid Biosynthesis by Binding Metabolic Intermediates. Journal of Biological Chemistry, 288(49): 35322–35332.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tese de Doutoramento, Ciências Agrárias, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mestrado em Engenharia Alimentar - Instituto Superior de Agronomia - UL

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A produção e o consumo de alimentos produzidos em agricultura biológica (AB) apoiam-se na ideia da sua superior qualidade nutricional e em supostos efeitos benéficos na saúde humana, bem como no menor impacto ambiental da AB relativamente à agricultura convencional (AC). Mas serão mesmo as dietas baseadas nestes alimentos significativamente mais saudáveis para as pessoas e o ambiente e, portanto, mais sustentáveis que as dietas baseadas no modo convencional? O objetivo deste trabalho é apresentar uma síntese da informação publicada na última década referente a análises comparativas entre AB e AC, através de um conjunto de indicadores de qualidade ambiental e de saúde humana. Foram consultados diversos estudos, privilegiando aqueles que recorreram a um conjunto de indicadores de qualidade ambiental e de saúde humana. A nível ambiental, os estudos apontam para que, apesar das práticas biológicas terem, em geral, impactes menos negativos por unidade de área que as práticas convencionais, o mesmo não se verifica por unidade de produto. Os estudos sobre o impacto comparativo na biodiversidade mostram a tendência benéfica da AB, apesar de as diferenças se afigurarem pouco consistentes. A presença de resíduos de pesticidas e metais pesados em alimentos biológicos é significativamente menor que nos convencionais. A nível nutricional, os vegetais e frutas biológicos apresentam consistentemente conteúdos mais elevados em metabolitos secundários que os convencionais. Todavia, os estudos disponíveis sobre efeitos na saúde são pouco conclusivos quanto a diferenças consistentes entre modos de produção. Evidências científicas suportam a ideia geral de que a AB tende a constituir um modo de produção de alimentos ambiental e humanamente mais sustentável que a AC, embora as diferenças sejam consistentes apenas em alguns indicadores.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: To investigate the phytochemistry and cytotoxic activity of stem bark extracts from Genus dolichocarpa and Duguetia chrysocarpa - two species of the Annonaceae family. Methods: The crude ethanol bark extracts (EtOH) of the plants were obtained by maceration. The crude extracts were suspended in a mixture of methanol (MeOH) and water (H2O) (proportion 3:7 v/v) and partitioned with hexane, chloroform (CHCl3) and ethyl acetate (AcOEt) in ascending order of polarity to obtain the respective fractions. The extracts were evaluated on thin layer chromatography (TLC) plates of silica gel to highlight the main groups of secondary metabolites. Cytotoxicity was tested against human tumor cell lines - OVCAR-8 (ovarian), SF-295 (brain) and HCT-116 (colon) - using 3- (4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Results: The screening results demonstrated that all the extracts were positive for the presence of flavonoids and tannins. The presence of alkaloids also was detected in some extracts. The hexane extract of A. dolichocarpa showed the strongest cytotoxicity against HCT-116 with cell growth inhibition of 89.02 %. Conclusion: The findings demonstrate for the first time the cytotoxic activity of the extracts of A. dolichocarpa and D. chrysocarpa, thus providing some evidence that plants of the Annonaceae family are a source of active secondary metabolites with cytotoxic activity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: To Isolate and characterize Actinobacteria with antimicrobial activity from Guaviare River (Colombia). Methods: Water and sediment samples were collected from Guaviare River. Direct plating, heat and CaCO3 methods were used to isolate Actinobacteria. Six bacterial strains were tested using T-Streak method: Escherichia coli ATCC 23724, Staphylococus aureus ATCC 25923, Acinetobacter baumannii ATCC 19606, Bacillus subtilis ATCC 21556, Klebsiella pneumoniae ATCC 700603, Chromobacterium violaceum ATCC 31532. Strains of Fusarium sp. H24, Trichoderma harzianum H5 and Colletotrichum gloeosporioides were tested using Kirby-Bauer method. Isolates with high antimicrobial activity were selected for further taxonomic identification. Results: A total of 374 actinobacteria isolates were obtained. Seven isolates exhibited high antimicrobial activity (p < 0.05) and were confirmed as members of Streptomycetaceae family. Of these, three isolates showed differential phenotypic and genotypic profiles, indicating that they may represent new species. Conclusions: To date, this is the first study of this type in Colombian Orinoquia and indicates that this promising source of Actinobacteria from aquatic sediments with the ability to produce antimicrobial secondary metabolites.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: To determine the effect of the secondary metabolites from Penicillium sp. H9318 on cytotoxicity and cell cycle progression. Methods: A yeast PP1 inhibitory screening system was carried out to confirm the presence of anti- PP1c activity in crude acetone extracts of strain H9318. The extracts were fractionated and identified as Fraction S1 and Citrinin 9318 (CTN9318). Various cancer cell lines were used to test for the toxicity of the crude acetone extracts, Fraction S1 and Citrinin 9318, using MTT viability assay. Results: It was found that a colorectal cancer cell line, HT-29, was susceptible to Fraction S1 and Citrinin 9318. A propidium iodide (PI)-incorporated DNA assay was used to show that there was G2/M arrest in HT-29 by Citrinin 9318. Conclusion: Citrinin 9318 inhibits the viability of HT-29 via mitotic block. The results suggest that Citrinin 9318 is capable of exerting cytotoxicity and mitotic arrest in a colon cancer cell line, HT29

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: To evaluate the antibacterial and cytotoxic activities of the secondary metabolites of Lobophytum sp. Methods: Maceration with methanol: chloroform (1:1) was applied to extract the coral material. Chromatographic and spectroscopic techniques were employed for fractionation, isolation and elucidation of pure compounds. Antibacterial activities were performed by well diffusion method against three Gram-positive and four Gram-negative bacteria. Brine shrimp lethality test was employed to predict toxicity, while antitumor activity were tested by 3-(4, 5-dimethylthiazol-2-yl)-2, 5- diphenyltetrazolium bromide (MTT) method against Ehrlich carcinoma cells. Results: Four sesquiterpenes, one cembranoid type diterpenes and two steroids were isolated. 1 exhibited significant antibacterial activity against four tested bacteria (P. aeruginosa, S. aureus, S. epidermis, and S. pneumonia) with MIC value of 15 μg/mL. Moreover, 1 showed high diameter zone of inhibition ranging from 16 - 18 mm against test bacteria. Compounds 4 and 5 displayed moderate antibacterial activity against all test bacteria with inhibition zone diameter (IZD) ranging from 11 – 15 mm and MIC values of 30 μg/mL. 2, 3, 6 and 7 exhibited weak antibacterial activity (IZD, 7 - 11 mm; MIC ≥ 30 μg/mL). In addition, only diterpene compound (4) showed high toxicity against A. Salina and antitumor activity against Erhlich carcinoma cells with the LD50 of 25 and 50 μg/mL, respectively. Conclusion: This study reveals the strong antibacterial activity of sesquiterpene alismol (1) and the potential antibacterial and antitumor activity of cembranoid type diterpene, cembrene A (4).