926 resultados para Air showers
Resumo:
The objective of the present study was to determine the impact of acute short-term exposure to air pollution on the cardiorespiratory performance of military fireman living and working in the city of Guarujá, São Paulo, Brazil. Twenty-five healthy non-smoking firemen aged 24 to 45 years had about 1 h of exposure to low and high levels of air pollution. The tests consisted of two phases: phase A, in Bertioga, a town with low levels of air pollution, and phase B, in Cubatão, a polluted town, with a 7-day interval between phases. The volunteers remained in the cities (Bertioga/Cubatão) only for the time required to perform the tests. Cumulative load 10 ± 2 min-long exertion tests were performed on a treadmill, consisting of a 2-min stage at a load of 7 km/h, followed by increasing exertion of 1 km h-1 min-1 until the maximum individual limit. There were statistically significant differences (P < 0.05) in anaerobic threshold (AT) between Cubatão (35.04 ± 4.91 mL kg-1 min-1) and Bertioga (36.98 ± 5.62 mL kg-1 min-1; P = 0.01), in the heart rate at AT (AT HR; Cubatão 152.08 ± 14.86 bpm, Bertioga 157.44 ± 13.64 bpm; P = 0.001), and in percent maximal oxygen consumption at AT (AT%VO2max; Cubatão 64.56 ± 6.55%, Bertioga 67.40 ± 5.35%; P = 0.03). However, there were no differences in VO2max, maximal heart rate or velocity at AT (ATvel) observed in firemen between towns. The acute exposure to pollutants in Cubatão, SP, caused a significant reduction in the performance at submaximal levels of physical exertion.
Resumo:
Oxidative stress plays a major role in the pathogenesis of particle-dependent lung injury. Ambient particle levels from vehicles have not been previously shown to cause oxidative stress to the lungs. The present study was conducted to a) determine whether short-term exposure to ambient levels of particulate air pollution from vehicles elicits inflammatory responses and lipid peroxidation in rat lungs, and b) determine if intermittent short-term exposures (every 4 days) induce some degree of tolerance. Three-month-old male Wistar rats were exposed to ambient particulate matter (PM) from vehicles (N = 30) for 6 or 20 continuous hours, or for intermittent (5 h) periods during 20 h for 4 consecutive days or to filtered air (PM <10 µm; N = 30). Rats continuously breathing polluted air for 20 h (P-20) showed a significant increase in the total number of leukocytes in bronchoalveolar lavage compared to control (C-20: 2.61 x 105 ± 0.51;P-20: 5.01 x 105 ± 0.81; P < 0.05) and in lipid peroxidation ([MDA] nmol/mg protein: C-20: 0.148 ± 0.01; P-20: 0.226 ± 0.02; P < 0.05). Shorter exposure (6 h) and intermittent 5-h exposures over a period of 4 days did not cause significant changes in leukocytes. Lipid damage resulting from 20-h exposure to particulate air pollution did not cause a significant increase in lung water content. These data suggest oxidative stress as one of the mechanisms responsible for the acute adverse respiratory effects of particles, and suggest that short-term inhalation of ambient particulate air pollution from street with high automobile traffic represents a biological hazard.
Resumo:
Studies of cooking-generated NO2 effects are rare in occupational epidemiology. In the present study, we evaluated the lung function of professional cooks exposed to NO2 in hospital kitchens. We performed spirometry in 37 cooks working in four hospital kitchens and estimated the predicted FVC, FEV1 and FEF25-75, based on age, sex, race, weight, and height, according to Knudson standards. NO2 measurements were obtained for 4 consecutive days during 4 different periods at 20-day intervals in each kitchen. Measurements were performed inside and outside the kitchens, simultaneously using Palm diffusion tubes. A time/exposure indicator was defined as representative of the cumulative exposure of each cook. No statistically significant effect of NO2 exposure on FVC was found. Each year of work as a cook corresponded to a decrease in predicted FEV1 of 2.5% (P = 0.046) for the group as a whole. When smoking status and asthma were included in the analysis the effect of time/exposure decreased about 10% and lost statistical significance. On predicted FEF25-75, a decrease of 3.5% (P = 0.035) was observed for the same group and the inclusion of controllers for smoking status and asthma did not affect the effects of time/exposure on pulmonary function parameter. After a 10-year period of work as cooks the participants of the study may present decreases in both predicted FEV1 and FEF25-75 that can reach 20 and 30%, respectively. The present study showed small but statistically significant adverse effects of gas stove exposure on the lung function of professional cooks.
Resumo:
Type 2 diabetes increases the risk of cardiovascular mortality and these patients, even without previous myocardial infarction, run the risk of fatal coronary heart disease similar to non-diabetic patients surviving myocardial infarction. There is evidence showing that particulate matter air pollution is associated with increases in cardiopulmonary morbidity and mortality. The present study was carried out to evaluate the effect of diabetes mellitus on the association of air pollution with cardiovascular emergency room visits in a tertiary referral hospital in the city of São Paulo. Using a time-series approach, and adopting generalized linear Poisson regression models, we assessed the effect of daily variations in PM10, CO, NO2, SO2, and O3 on the daily number of emergency room visits for cardiovascular diseases in diabetic and non-diabetic patients from 2001 to 2003. A semi-parametric smoother (natural spline) was adopted to control long-term trends, linear term seasonal usage and weather variables. In this period, 45,000 cardiovascular emergency room visits were registered. The observed increase in interquartile range within the 2-day moving average of 8.0 µg/m³ SO2 was associated with 7.0% (95%CI: 4.0-11.0) and 20.0% (95%CI: 5.0-44.0) increases in cardiovascular disease emergency room visits by non-diabetic and diabetic groups, respectively. These data indicate that air pollution causes an increase of cardiovascular emergency room visits, and that diabetic patients are extremely susceptible to the adverse effects of air pollution on their health conditions.
Resumo:
The continuous intravenous administration of isotopic bicarbonate (NaH13CO2) has been used for the determination of the retention of the 13CO2 fraction or the 13CO2 recovered in expired air. This determination is important for the calculation of substrate oxidation. The aim of the present study was to evaluate, in critically ill patients with sepsis under mechanical ventilation, the 13CO2 recovery fraction in expired air after continuous intravenous infusion of NaH13CO2 (3.8 µmol/kg diluted in 0.9% saline in ddH2O). A prospective study was conducted on 10 patients with septic shock between the second and fifth day of sepsis evolution (APACHE II, 25.9 ± 7.4). Initially, baseline CO2 was collected and indirect calorimetry was also performed. A primer of 5 mL NaH13CO2 was administered followed by continuous infusion of 5 mL/h for 6 h. Six CO2 production (VCO2) measurements (30 min each) were made with a portable metabolic cart connected to a respirator and hourly samples of expired air were obtained using a 750-mL gas collecting bag attached to the outlet of the respirator. 13CO2 enrichment in expired air was determined with a mass spectrometer. The patients presented a mean value of VCO2 of 182 ± 52 mL/min during the steady-state phase. The mean recovery fraction was 0.68 ± 0.06%, which is less than that reported in the literature (0.82 ± 0.03%). This suggests that the 13CO2 recovery fraction in septic patients following enteral feeding is incomplete, indicating retention of 13CO2 in the organism. The severity of septic shock in terms of the prognostic index APACHE II and the sepsis score was not associated with the 13CO2 recovery fraction in expired air.
Resumo:
The objective of the present study was to estimate the contribution of environmental pollutants to hospital admissions for cardiovascular disease. A time series ecological study was conducted on subjects aged over 60 years and living in São José dos Campos, Brazil, with a population near 700,000 inhabitants. Hospital admission data of public health patients (SUS) were obtained from DATASUS for the period between January 1, 2004 and December 31, 2006, according to the ICD-10 diagnoses I20 to I22 and I24. Particulate matter with less than 10 µm in aerodynamic diameter, sulfur dioxide and ozone were the pollutants examined, and the control variables were mean temperature and relative humidity. Data on pollutants were obtained from the São Paulo State Sanitary Agency. The generalized linear model Poisson regression with lags of up to 5 days was used. There were 1303 hospital admissions during the period. Exposure to particulate matter was significantly associated with hospitalization for cardiovascular disease 3 days after exposure (RR = 1.006; 95%CI = 1.000 to 1.010) and an increase of 16 µg/m³ was associated with a 10% increase in risk of hospitalization; other pollutants were not associated with hospitalization. Thus, it was possible to identify the role of exposure to particulate matter as an environmental pollutant in hospitalization for cardiovascular disease in a medium-sized city inSoutheastern Brazil.
Resumo:
Few studies evaluate the amount of particulate matter less than 2.5 mm in diameter (PM2.5) in relation to a change in lung function among adults in a population. The aim of this study was to assess the association of coal as a domestic energy source to pulmonary function in an adult population in inner-city areas of Zunyi city in China where coal use is common. In a cross-sectional study of 104 households, pulmonary function measurements were assessed and compared in 110 coal users and 121 non-coal users (≥18 years old) who were all nonsmokers. Several sociodemographic factors were assessed by questionnaire, and ventilatory function measurements including forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), the FEV1/FVC ratio, and peak expiratory flow rate (PEFR) were compared between the 2 groups. The amount of PM2.5 was also measured in all residences. There was a significant increase in the relative concentration of PM2.5 in the indoor kitchens and living rooms of the coal-exposed group compared to the non-coal-exposed group. In multivariate analysis, current exposure to coal smoke was associated with a 31.7% decrease in FVC, a 42.0% decrease in FEV1, a 7.46% decrease in the FEV1/FVC ratio, and a 23.1% decrease in PEFR in adult residents. The slope of lung function decrease for Chinese adults is approximately a 2-L decrease in FVC, a 3-L decrease in FEV1, and an 8 L/s decrease in PEFR per count per minute of PM2.5 exposure. These results demonstrate the harmful effects of indoor air pollution from coal smoke on the lung function of adult residents and emphasize the need for public health efforts to decrease exposure to coal smoke.
Resumo:
Cocoa flavour is greatly influenced by polyphenols. These compounds undergo a series of transformations during cocoa processing leading to the characteristic cocoa flavour. The use of exogenous polyphenol oxidase (PPO) proved to be useful to reduce polyphenol content in cocoa nibs. The effect of a PPO associated or not with air over total phenol and tannin content was evaluated. Cocoa nibs were autoclaved and treated with a PPO or water in the absence or presence of an air flow for 0.5, 1, 2 and 3 hours. Total phenol content was reduced in PPO or water treatments, but when associated with air there was an increase in phenol content. Tannin content was reduced only by the treatment with water and air.
Resumo:
The freezing times of fruit pulp models packed and conditioned in multi-layered boxes were evaluated under conditions similar to those employed commercially. Estimating the freezing time is a difficult practice due to the presence of significant voids in the boxes, whose influence may be analyzed by means of various methods. In this study, a procedure for estimating freezing time by using the models described in the literature was compared with experimental measurements by collecting time/temperature data. The following results show that the airflow through packages is a significant parameter for freezing time estimation. When the presence of preferential channels was considered, the predicted freezing time in the models could be 10% lower than the experimental values, depending on the method. The isotherms traced as a function of the location of the samples inside the boxes showed the displacement of the thermal center in relation to the geometric center of the product.
Resumo:
Os fermentadores tipo air lift oferecem vantagens tais como: eficiente homogeneização dos componentes, baixo cisalhamento e economia de energia, pois o meio é agitado pelo processo de aeração, sem necessidade de agitação mecânica. O objetivo deste trabalho foi analisar a cinética de crescimento de Saccharomyces boulardii neste fermentador, com aeração de 1 e 1,5 vvm (volume de ar por volume de meio, por minuto), comparada com o crescimento em frascos agitados em shaker, visando a futura aplicação deste fermentador, em escala industrial. Os resultados indicaram que houve uma diminuição do pH com o consumo da glicose do meio, a qual foi totalmente consumida até o final da fase exponencial, de 5 e 6 horas para o shaker e o air lift, respectivamente. Após este período houve uma alteração na velocidade de crescimento de S. boulardii, em ambos os equipamentos, indicando uma possível mudança na fonte de carbono utilizada, uma vez que toda a glicose foi consumida após estes períodos. Os valores de velocidades específicas de crescimento foram semelhantes para o shaker e air-lift com 1,0 vvm, porém inferiores ao air-lift com 1,5 vvm, indicando que neste último reator há possibilidades de se conseguir uma velocidade de produção celular maior, dependendo apenas da eficiência de oxigenação oferecida.
Resumo:
Freezing of poultry cuts in continuous convective air blast tunnels is normally performed with the products protected by Low Density Polyethylene (LDPE) as a primary packaging and using Corrugated Cardboard Boxes (CCB) as secondary packaging. The objective of this work was to investigate the influence of these secondary packaging on the freezing of poultry cuts in continuous convective air blast tunnels. The study was performed by replacing CCB with Perforated Metal Boxes (PMB) in order to remove the packaging thermal resistance. The assays, performed in a industrial plant, demonstrated that CCB used commercially for meat freezing have a high heat transfer resistance. Their replacement with PMB can lead to shorter freezing times and spatially homogeneous freezing. Reductions of up to 45% in the freezing times were observed using PMB. The plateau of the temperature curve, related to the freezing time of free water, was significantly reduced using PMB, which is accepted to lead to better product quality after thawing. As the products were protected by the LDPE films as primary packaging, their appearance were not affected. The results presented in this work indicate that replacing CBB with PMB can be an excellent alternative to reduce freezing time and improve freezing homogeneity in industrial air blast tunnels, which could also be applied to other products.
Resumo:
The aim of this research was to study the effect of air-temperature and diet composition on the mass transfer kinetics during the drying process of pellets used for Japanese Abalone (Haliotis discus hannai) feeding. In the experimental design, three temperatures were used for convective drying, as well as three different diet compositions (Diets A, B and C), in which the amount of fishmeal, spirulin, algae, fish oil and cornstarch varied. The water diffusion coefficient of the pellets was determined using the equation of Fick's second law, which resulted in values between 0.84-1.94×10-10 m²/s. The drying kinetics was modeled using Page, Modified Page, Root of time, Exponential, Logarithmic, Two-Terms, Modified Henderson-Pabis and Weibull models. In addition, two new models, referred to as 'Proposed' models 1 and 2, were used to simulate this process. According to the statistical tests applied, the models that best fitted the experimental data were Modified Henderson-Pabis, Weibull and Proposed model 2, respectively. Bifactorial analysis of variance ANOVA showed that Diet A (fishmeal 44%, spirulin 9%, fish oil 1% and cornstarch 36%) presented the highest diffusion coefficient values, which were favored by the temperature increase in the drying process.
Resumo:
The aim of the present study was to precool cauliflower using forced-air, vacuum and high and low flow hydro cooling methods. The weight of the precooled cauliflower heads (5000±5 g) was measured before they were placed in standard plastic crates. Cauliflower heads, whose initial temperature was 23.5 ± 0.5 ºC, were cooled until the temperature reached at 1 ºC. During the precooling process, time-dependent temperature and energy consumption were measured, and during vacuum precooling, the decreasing pressure values were recorded, and a curve of time-dependent pressure decrease (vacuum) was built. The most suitable cooling method to precool cauliflower in terms of cooling time and energy consumption was vacuum, followed by the high and low flow hydro and forced-air precooling methods, respectively. The highest weight loss was observed in the vacuum precooling method, followed by the forced-air method. However, there was an increase in the weight of the cauliflower heads in the high and low flow hydro precooling method. The best colour and hardness values were found in the vacuum precooling method. Among all methods tested, the most suitable method to precool cauliflower in terms of cooling and quality parameters was the vacuum precooling method.