995 resultados para Agricultural literature
Resumo:
For improved water management and efficiency of use in agriculture, studies dealing with coupled crop-surface water-groundwater models are needed. Such integrated models of crop and hydrology can provide accurate quantification of spatio-temporal variations of water balance parameters such as soil moisture store, evapotranspiration and recharge in a catchment. Performance of a coupled crop-hydrology model would depend on the availability of a calibrated crop model for various irrigated/rainfed crops and also on an accurate knowledge of soil hydraulic parameters in the catchment at relevant scale. Moreover, such a coupled model should be designed so as to enable the use/assimilation of recent satellite remote sensing products (optical and microwave) in order to model the processes at catchment scales. In this study we present a framework to couple a crop model with a groundwater model for applications to irrigated groundwater agricultural systems. We discuss the calibration of the STICS crop model and present a methodology to estimate the soil hydraulic parameters by inversion of crop model using both ground and satellite based data. Using this methodology we demonstrate the feasibility of estimation of potential recharge due to spatially varying soil/crop matrix.
Resumo:
To achieve food security and meet the demands of the ever-growing human populations, farming systems have assumed unsustainable practices to produce more from a finite land area. This has been cause for concern mainly due to the often-irreversible damage done to the otherwise productive agricultural landscapes. Agro-ecology is proclaimed to be deteriorating due to eroding integrity of connected ecological mosaics and vulnerability to climate change. This has contributed to declining species diversity, loss of buffer vegetation, fragmentation of habitats, and loss of natural pollinators or predators, which eventually leads to decline in ecosystem services. Currently, a hierarchy of conservation initiatives is being considered to restore ecological integrity of agricultural landscapes. However, the challenge of identifying a suitable conservation strategy is a daunting task in view of socio-ecological factors that may constrain the choice of available strategies. One way to mitigate this situation and integrate biodiversity with agricultural landscapes is to implement offset mechanisms, which are compensatory and balancing approaches to restore the ecological health and function of an ecosystem. This needs to be tailored to the history of location specific agricultural practices, and the social, ecological and environmental conditions. The offset mechanisms can complement other initiatives through which farmers are insured against landscape-level risks such as droughts, fire and floods. For countries in the developing world with significant biodiversity and extensive agriculture, we should promote a comprehensive model of sustainable agricultural landscapes and ecosystem services, replicable at landscape to regional scales. Arguably, the model can be a potential option to sustain the integrity of biodiversity mosaic in agricultural landscapes.
Resumo:
Recently, research on polymer has drawn much attention mainly due to the ever increasing application of these polymeric materials in several areas such as food packaging industry, agricultural industry and biomedical research. However, increasing industrial use of polymers has led to the environmentally critical issue of waste disposal. Further, the successful implication of polymeric materials in biomedical applications depends on the biodegradability of the concerned polymer. Various enzymes play an important role in the biodegradation of polymers. The present review describes the enzyme mediated biodegradation of various polymers including synthetic, natural and blends of these materials. Detailed examples of enzymatic degradation of polymers are illustrated from current scientific literature with the discussion on various factors that can influence the degradation. In addition, different techniques that are generally applied to assess the degradation process as well as degradation products have been described. Finally, a special emphasis is given to the investigation of the kinetics of polymer degradation by enzymes.
Resumo:
While considered as sustainable and low-cost agricultural amendments, the impacts of organic fertilizers on downstream aquatic microbial communities remain poorly documented. We investigated the quantity and quality of the dissolved organic matter leaching from agricultural soil amended with compost, vermicompost or biochar and assessed their effects on lake microbial communities, in terms of viral and bacterial abundances, community structure and metabolic potential. The addition of compost and vermicompost significantly increased the amount of dissolved organic carbon in the leachate compared with soil alone. Leachates from these additions, either with or without biochar, were highly bioavailable to aquatic microbial communities, although reducing the metabolic potential of the community and harbouring more specific communities. Although not affecting bacterial richness or taxonomic distributions, the specific addition of biochar affected the original lake bacterial communities, resulting in a strongly different community. This could be partly explained by viral burst and converging bacterial abundances throughout the samples. These results underline the necessity to include off-site impacts of agricultural amendments when considering their cascading effect on downstream aquatic ecosystems.
Resumo:
The estimation of water and solute transit times in catchments is crucial for predicting the response of hydrosystems to external forcings (climatic or anthropogenic). The hydrogeochemical signatures of tracers (either natural or anthropogenic) in streams have been widely used to estimate transit times in catchments as they integrate the various processes at stake. However, most of these tracers are well suited for catchments with mean transit times lower than about 4-5 years. Since the second half of the 20th century, the intensification of agriculture led to a general increase of the nitrogen load in rivers. As nitrate is mainly transported by groundwater in agricultural catchments, this signal can be used to estimate transit times greater than several years, even if nitrate is not a conservative tracer. Conceptual hydrological models can be used to estimate catchment transit times provided their consistency is demonstrated, based on their ability to simulate the stream chemical signatures at various time scales and catchment internal processes such as N storage in groundwater. The objective of this study was to assess if a conceptual lumped model was able to simulate the observed patterns of nitrogen concentration, at various time scales, from seasonal to pluriannual and thus if it was relevant to estimate the nitrogen transit times in headwater catchments. A conceptual lumped model, representing shallow groundwater flow as two parallel linear stores with double porosity, and riparian processes by a constant nitrogen removal function, was applied on two paired agricultural catchments which belong to the Research Observatory ORE AgrHys. The Global Likelihood Uncertainty Estimation (GLUE) approach was used to estimate parameter values and uncertainties. The model performance was assessed on (i) its ability to simulate the contrasted patterns of stream flow and stream nitrate concentrations at seasonal and inter-annual time scales, (ii) its ability to simulate the patterns observed in groundwater at the same temporal scales, and (iii) the consistency of long-term simulations using the calibrated model and the general pattern of the nitrate concentration increase in the region since the beginning of the intensification of agriculture in the 1960s. The simulated nitrate transit times were found more sensitive to climate variability than to parameter uncertainty, and average values were found to be consistent with results from others studies in the same region involving modeling and groundwater dating. This study shows that a simple model can be used to simulate the main dynamics of nitrogen in an intensively polluted catchment and then be used to estimate the transit times of these pollutants in the system which is crucial to guide mitigation plans design and assessment. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
This paper lists some references that could in some way be relevant in the context of the real-time computational simulation of biological organs, the research area being defined in a very broad sense. This paper contains 198 references.
Resumo:
Among the various types of a-peptide folding motifs, delta-turn, which requires a central cis-amide disposition, has been one of the least extensively investigated. In particular, this main-chain reversal topology has been studied in-depth neither in linear/cyclic peptides nor in proteins. This Minireview article assembles and critically analyzes relevant data from a literature survey on the d-turn conformation in those compounds. Unpublished results from recent conformational energy calculations and a preliminary solution-state analysis on a small model peptide, currently ongoing in our laboratories, are also briefly outlined.
Resumo:
Micro Small and Medium Enterprises (MSMEs) is an integral part of the Indian industrial sector. The distinctive features of MSMEs are less capital investment and high labour absorption which has created unprecedented importance to this sector. As per the Development Commissioner of MSME, the sector has the credit of being the second highest in employment in India, which stands next to agricultural sector. The MSMEs are very much needed in efficiently allocating the enormous labour supply and scarce capital by implementing labour intensive production processes. Associated with this high growth rates, MSMEs are also facing a number of problems like sub-optimal scale of operation, technological obsolescence, supply chain inefficiencies, increasing domestic and global competition, fund shortages, change in manufacturing & marketing strategies, turbulent and uncertain market scenario. To survive with such issues and compete with large and global enterprises, MSMEs need to adopt innovative approaches in their regular business operations. Among the manufacturing sectors, we find that they are unable to focus themselves in the present competition. This paper presents a brief literature of work done in MSMEs, Innovation and Strategic marketing with reference to Indian manufacturing firms.
Resumo:
The pace of development in the world has increased over the years and with it, the use of hi-tech gadgets, consumer durables, automobiles, etc. has also gone up. In this context, as resources become more and more scarce, there are multiple challenges that emerge both from a sustainable development perspective, and from the perspective of meeting profitability objectives of a firm. Remanufacturing has come up in a big way as an answer to these challenges, but firms are struggling with respect to revenue management of this nascent area. We assess the current literature and distil the key factors that firms need to consider as they assimilate remanufacturing in their operations and revenue management strategy. We provide an assessment of white spaces in research in this area and also outline the directions for future research.
Resumo:
The non-availability of high-spatial-resolution thermal data from satellites on a consistent basis led to the development of different models for sharpening coarse-spatial-resolution thermal data. Thermal sharpening models that are based on the relationship between land-surface temperature (LST) and a vegetation index (VI) such as the normalized difference vegetation index (NDVI) or fraction vegetation cover (FVC) have gained much attention due to their simplicity, physical basis, and operational capability. However, there are hardly any studies in the literature examining comprehensively various VIs apart from NDVI and FVC, which may be better suited for thermal sharpening over agricultural and natural landscapes. The aim of this study is to compare the relative performance of five different VIs, namely NDVI, FVC, the normalized difference water index (NDWI), soil adjusted vegetation index (SAVI), and modified soil adjusted vegetation index (MSAVI), for thermal sharpening using the DisTrad thermal sharpening model over agricultural and natural landscapes in India. Multi-temporal LST data from Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and Moderate Resolution Imaging Spectroradiometer (MODIS) sensors obtained over two different agro-climatic grids in India were disaggregated from 960 m to 120 m spatial resolution. The sharpened LST was compared with the reference LST estimated from the Landsat data at 120 m spatial resolution. In addition to this, MODIS LST was disaggregated from 960 m to 480 m and compared with ground measurements at five sites in India. It was found that NDVI and FVC performed better only under wet conditions, whereas under drier conditions, the performance of NDWI was superior to other indices and produced accurate results. SAVI and MSAVI always produced poorer results compared with NDVI/FVC and NDWI for wet and dry cases, respectively.