781 resultados para Agent-based methodologies
Resumo:
O objetivo deste trabalho é analisar como o processo de inovações tecnológicas é tratado pela Teoria dos Sistemas Complexos. A abordagem neoclássica tradicional, ao partir de pressupostos bastante restritivos sobre os agentes e os mercados, não é capaz de fornecer explicações plausíveis aos vários problemas econômicos da vida real. Ao desconsiderar a dinâmica dos fenômenos econômicos, essa abordagem foi incapaz de incorporar os aspectos do processo de inovação e mudança tecnológica. A abordagem evolucionária, nesse sentido, ao considerar a racionalidade limitada, incerteza e heterogeneidade presente em ambientes que exibem inovação, foi capaz de fornecer um tratamento mais próximo da realidade. A inovação é, então, entendida como uma mudança descontínua que altera as condições estruturais gerando desenvolvimento, progresso e evolução no sistema. Já abordagem dos sistemas complexos, ao apresentar um arcabouço não reducionista e que se fundamenta sobre uma perspectiva evolucionária e sistêmica, concebe a economia como um sistema composto por agentes heterogêneos que interagem entre si. Apesar do ambiente de incerteza nas decisões tomadas, os agentes procuram se adaptar às informações recebidas do meio e se auto-organizarem gerando com isso novos padrões de auto-ordenamento e estruturas emergentes. A modelagem, nesse sentido, tem por principal objetivo descobrir as propriedades emergentes resultantes da interação entre os agentes no sistema. Por fim chega-se a conclusão de que as inovações tecnológicas apresentaram resultados mais satisfatórios e mais condizentes quando analisadas dentro dessa perspectiva agent-based.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Perioperative fluid therapy remains a highly debated topic. Its purpose is to maintain or restore effective circulating blood volume during the immediate perioperative period. Maintaining effective circulating blood volume and pressure are key components of assuring adequate organ perfusion while avoiding the risks associated with either organ hypo- or hyperperfusion. Relative to perioperative fluid therapy, three inescapable conclusions exist: overhydration is bad, underhydration is bad, and what we assume about the fluid status of our patients may be incorrect. There is wide variability of practice, both between individuals and institutions. The aims of this paper are to clearly define the risks and benefits of fluid choices within the perioperative space, to describe current evidence-based methodologies for their administration, and ultimately to reduce the variability with which perioperative fluids are administered. Based on the abovementioned acknowledgements, a group of 72 researchers, well known within the field of fluid resuscitation, were invited, via email, to attend a meeting that was held in Chicago in 2011 to discuss perioperative fluid therapy. From the 72 invitees, 14 researchers representing 7 countries attended, and thus, the international Fluid Optimization Group (FOG) came into existence. These researches, working collaboratively, have reviewed the data from 162 different fluid resuscitation papers including both operative and intensive care unit populations. This manuscript is the result of 3 years of evidence-based, discussions, analysis, and synthesis of the currently known risks and benefits of individual fluids and the best methods for administering them. The results of this review paper provide an overview of the components of an effective perioperative fluid administration plan and address both the physiologic principles and outcomes of fluid administration. We recommend that both perioperative fluid choice and therapy be individualized. Patients should receive fluid therapy guided by predefined physiologic targets. Specifically, fluids should be administered when patients require augmentation of their perfusion and are also volume responsive. This paper provides a general approach to fluid therapy and practical recommendations.
Falhas de mercado e redes em políticas públicas: desafios e possibilidades ao Sistema Único de Saúde
Resumo:
Os princípios e as diretrizes do Sistema Único de Saúde (SUS) impõem uma estrutura de assistência baseada em redes de políticas públicas que, combinada ao modelo de financiamento adotado, conduz a falhas de mercado. Isso impõe barreiras à gestão do sistema público de saúde e à concretização dos objetivos do SUS. As características institucionais e a heterogeneidade dos atores, aliadas à existência de diferentes redes de atenção à saúde, geram complexidade analítica no estudo da dinâmica global da rede do SUS. Há limitações ao emprego de métodos quantitativos baseados em análise estática com dados retrospectivos do sistema público de saúde. Assim, propõe-se a abordagem do SUS como sistema complexo, a partir da utilização de metodologia quantitativa inovadora baseada em simulação computacional. O presente artigo buscou analisar desafios e potencialidades na utilização de modelagem com autômatos celulares combinada com modelagem baseada em agentes para simulação da evolução da rede de serviços do SUS. Tal abordagem deve permitir melhor compreensão da organização, heterogeneidade e dinâmica estrutural da rede de serviços do SUS e possibilitar minimização dos efeitos das falhas de mercado no sistema de saúde brasileiro.
Resumo:
Communication and coordination are two key-aspects in open distributed agent system, being both responsible for the system’s behaviour integrity. An infrastructure capable to handling these issues, like TuCSoN, should to be able to exploit modern technologies and tools provided by fast software engineering contexts. Thesis aims to demonstrate TuCSoN infrastructure’s abilities to cope new possibilities, hardware and software, offered by mobile technology. The scenarios are going to configure, are related to the distributed nature of multi-agent systems where an agent should be located and runned just on a mobile device. We deal new mobile technology frontiers concerned with smartphones using Android operating system by Google. Analysis and deployment of a distributed agent-based system so described go first to impact with quality and quantity considerations about available resources. Engineering issue at the base of our research is to use TuCSoN against to reduced memory and computing capability of a smartphone, without the loss of functionality, efficiency and integrity for the infrastructure. Thesis work is organized on two fronts simultaneously: the former is the rationalization process of the available hardware and software resources, the latter, totally orthogonal, is the adaptation and optimization process about TuCSoN architecture for an ad-hoc client side release.
Resumo:
The hierarchical organisation of biological systems plays a crucial role in the pattern formation of gene expression resulting from the morphogenetic processes, where autonomous internal dynamics of cells, as well as cell-to-cell interactions through membranes, are responsible for the emergent peculiar structures of the individual phenotype. Being able to reproduce the systems dynamics at different levels of such a hierarchy might be very useful for studying such a complex phenomenon of self-organisation. The idea is to model the phenomenon in terms of a large and dynamic network of compartments, where the interplay between inter-compartment and intra-compartment events determines the emergent behaviour resulting in the formation of spatial patterns. According to these premises the thesis proposes a review of the different approaches already developed in modelling developmental biology problems, as well as the main models and infrastructures available in literature for modelling biological systems, analysing their capabilities in tackling multi-compartment / multi-level models. The thesis then introduces a practical framework, MS-BioNET, for modelling and simulating these scenarios exploiting the potential of multi-level dynamics. This is based on (i) a computational model featuring networks of compartments and an enhanced model of chemical reaction addressing molecule transfer, (ii) a logic-oriented language to flexibly specify complex simulation scenarios, and (iii) a simulation engine based on the many-species/many-channels optimised version of Gillespie’s direct method. The thesis finally proposes the adoption of the agent-based model as an approach capable of capture multi-level dynamics. To overcome the problem of parameter tuning in the model, the simulators are supplied with a module for parameter optimisation. The task is defined as an optimisation problem over the parameter space in which the objective function to be minimised is the distance between the output of the simulator and a target one. The problem is tackled with a metaheuristic algorithm. As an example of application of the MS-BioNET framework and of the agent-based model, a model of the first stages of Drosophila Melanogaster development is realised. The model goal is to generate the early spatial pattern of gap gene expression. The correctness of the models is shown comparing the simulation results with real data of gene expression with spatial and temporal resolution, acquired in free on-line sources.
Resumo:
While the use of distributed intelligence has been incrementally spreading in the design of a great number of intelligent systems, the field of Artificial Intelligence in Real Time Strategy games has remained mostly a centralized environment. Despite turn-based games have attained AIs of world-class level, the fast paced nature of RTS games has proven to be a significant obstacle to the quality of its AIs. Chapter 1 introduces RTS games describing their characteristics, mechanics and elements. Chapter 2 introduces Multi-Agent Systems and the use of the Beliefs-Desires-Intentions abstraction, analysing the possibilities given by self-computing properties. In Chapter 3 the current state of AI development in RTS games is analyzed highlighting the struggles of the gaming industry to produce valuable. The focus on improving multiplayer experience has impacted gravely on the quality of the AIs thus leaving them with serious flaws that impair their ability to challenge and entertain players. Chapter 4 explores different aspects of AI development for RTS, evaluating the potential strengths and weaknesses of an agent-based approach and analysing which aspects can benefit the most against centralized AIs. Chapter 5 describes a generic agent-based framework for RTS games where every game entity becomes an agent, each of which having its own knowledge and set of goals. Different aspects of the game, like economy, exploration and warfare are also analysed, and some agent-based solutions are outlined. The possible exploitation of self-computing properties to efficiently organize the agents activity is then inspected. Chapter 6 presents the design and implementation of an AI for an existing Open Source game in beta development stage: 0 a.d., an historical RTS game on ancient warfare which features a modern graphical engine and evolved mechanics. The entities in the conceptual framework are implemented in a new agent-based platform seamlessly nested inside the existing game engine, called ABot, widely described in Chapters 7, 8 and 9. Chapter 10 and 11 include the design and realization of a new agent based language useful for defining behavioural modules for the agents in ABot, paving the way for a wider spectrum of contributors. Chapter 12 concludes the work analysing the outcome of tests meant to evaluate strategies, realism and pure performance, finally drawing conclusions and future works in Chapter 13.
Resumo:
Biomedical analyses are becoming increasingly complex, with respect to both the type of the data to be produced and the procedures to be executed. This trend is expected to continue in the future. The development of information and protocol management systems that can sustain this challenge is therefore becoming an essential enabling factor for all actors in the field. The use of custom-built solutions that require the biology domain expert to acquire or procure software engineering expertise in the development of the laboratory infrastructure is not fully satisfactory because it incurs undesirable mutual knowledge dependencies between the two camps. We propose instead an infrastructure concept that enables the domain experts to express laboratory protocols using proper domain knowledge, free from the incidence and mediation of the software implementation artefacts. In the system that we propose this is made possible by basing the modelling language on an authoritative domain specific ontology and then using modern model-driven architecture technology to transform the user models in software artefacts ready for execution in a multi-agent based execution platform specialized for biomedical laboratories.
Resumo:
This book will serve as a foundation for a variety of useful applications of graph theory to computer vision, pattern recognition, and related areas. It covers a representative set of novel graph-theoretic methods for complex computer vision and pattern recognition tasks. The first part of the book presents the application of graph theory to low-level processing of digital images such as a new method for partitioning a given image into a hierarchy of homogeneous areas using graph pyramids, or a study of the relationship between graph theory and digital topology. Part II presents graph-theoretic learning algorithms for high-level computer vision and pattern recognition applications, including a survey of graph based methodologies for pattern recognition and computer vision, a presentation of a series of computationally efficient algorithms for testing graph isomorphism and related graph matching tasks in pattern recognition and a new graph distance measure to be used for solving graph matching problems. Finally, Part III provides detailed descriptions of several applications of graph-based methods to real-world pattern recognition tasks. It includes a critical review of the main graph-based and structural methods for fingerprint classification, a new method to visualize time series of graphs, and potential applications in computer network monitoring and abnormal event detection.
Resumo:
Rechnergestützte Modellansätze, die Logistiksysteme gestalten und generieren, sind eine hochkomplexe Aufgabenstellung. Die bisher in der Praxis existierenden Planungs- und Steuerungsmodelle für Intralogistiksysteme weisen für die aktuellen und zukünftigen Anforderungen wie der Komplexitätsbewältigung, Reaktionsschnelligkeit und Anpassungsfähigkeit Schwachstellen auf. – Ein innovativer Ansatz, diesen Ansprüchen gerecht zu werden, stellen Multiagentensysteme dar. Mit ihrem dezentralen und modularen Charakter sind sie für ein komplexes Problem mit einem geringen Grad an Strukturiertheit geeignet. Außerdem ermöglichen diese computergestützten intelligenten Systeme den Anwendern eine einfache und aufwandsarme Handhabung.
Resumo:
Die hohe Komplexität zellularer intralogistischer Systeme und deren Steuerungsarchitektur legt die Verwendung moderner Simulations- und Visualisierungstechniken nahe, um schon im Vorfeld Aussagen über die Leistungsfähigkeit und Zukunftssicherheit eines geplanten Systems treffen zu können. In dieser Arbeit wird ein Konzept für ein Simulationssystem zur VR-basierten Steuerungsverifikation zellularer Intralogistiksysteme vorgestellt. Beschrieben wird die Erstellung eines Simulationsmodells für eine real existierende Anlage und es wird ein Überblick über die Bestandteile der Simulation, insbesondere die Anbindung der Steuerung des realen agentenbasierten Systems, gegeben.
Resumo:
Zur Sicherstellung einer schnellen und flexiblen Anpassung an sich ändernde Anforderungen sind innerbetriebliche Materialbereitstellungskonzepte in immer stärkerem Maße zu flexibilisieren. Hierdurch kann die Erreichung logistischer Ziele in einem dynamischen Produktionsumfeld gesteigert werden. Der Beitrag stellt ein Konzept für eine adaptive Materialbereitstellung in flexiblen Produktionssystemen auf Grundlage einer agentenbasierten Transportplanung und -steuerung vor. Der Fokus liegt hierbei auf der Planung und Steuerung der auf Basis von Materialbedarfsmeldungen ausgelösten innerbetrieblichen Transporte. Neben Pendeltouren zur Versorgung des Produktionssystems findet auch das dynamische Pickup-and-Delivery-Problem Berücksichtigung. Das vorgestellte Konzept ist an den Anforderungen selbstorganisierender Produktionsprozesse ausgerichtet.
Resumo:
The shift from host-centric to information-centric networking (ICN) promises seamless communication in mobile networks. However, most existing works either consider well-connected networks with high node density or introduce modifications to {ICN} message processing for delay-tolerant Networking (DTN). In this work, we present agent-based content retrieval, which provides information-centric {DTN} support as an application module without modifications to {ICN} message processing. This enables flexible interoperability in changing environments. If no content source can be found via wireless multi-hop routing, requesters may exploit the mobility of neighbor nodes (called agents) by delegating content retrieval to them. Agents that receive a delegation and move closer to content sources can retrieve data and return it back to requesters. We show that agent-based content retrieval may be even more efficient in scenarios where multi-hop communication is possible. Furthermore, we show that broadcast communication may not be necessarily the best option since dynamic unicast requests have little overhead and can better exploit short contact times between nodes (no broadcast delays required for duplicate suppression).
Resumo:
Information-centric networking (ICN) is a new communication paradigm that has been proposed to cope with drawbacks of host-based communication protocols, namely scalability and security. In this thesis, we base our work on Named Data Networking (NDN), which is a popular ICN architecture, and investigate NDN in the context of wireless and mobile ad hoc networks. In a first part, we focus on NDN efficiency (and potential improvements) in wireless environments by investigating NDN in wireless one-hop communication, i.e., without any routing protocols. A basic requirement to initiate informationcentric communication is the knowledge of existing and available content names. Therefore, we develop three opportunistic content discovery algorithms and evaluate them in diverse scenarios for different node densities and content distributions. After content names are known, requesters can retrieve content opportunistically from any neighbor node that provides the content. However, in case of short contact times to content sources, content retrieval may be disrupted. Therefore, we develop a requester application that keeps meta information of disrupted content retrievals and enables resume operations when a new content source has been found. Besides message efficiency, we also evaluate power consumption of information-centric broadcast and unicast communication. Based on our findings, we develop two mechanisms to increase efficiency of information-centric wireless one-hop communication. The first approach called Dynamic Unicast (DU) avoids broadcast communication whenever possible since broadcast transmissions result in more duplicate Data transmissions, lower data rates and higher energy consumption on mobile nodes, which are not interested in overheard Data, compared to unicast communication. Hence, DU uses broadcast communication only until a content source has been found and then retrieves content directly via unicast from the same source. The second approach called RC-NDN targets efficiency of wireless broadcast communication by reducing the number of duplicate Data transmissions. In particular, RC-NDN is a Data encoding scheme for content sources that increases diversity in wireless broadcast transmissions such that multiple concurrent requesters can profit from each others’ (overheard) message transmissions. If requesters and content sources are not in one-hop distance to each other, requests need to be forwarded via multi-hop routing. Therefore, in a second part of this thesis, we investigate information-centric wireless multi-hop communication. First, we consider multi-hop broadcast communication in the context of rather static community networks. We introduce the concept of preferred forwarders, which relay Interest messages slightly faster than non-preferred forwarders to reduce redundant duplicate message transmissions. While this approach works well in static networks, the performance may degrade in mobile networks if preferred forwarders may regularly move away. Thus, to enable routing in mobile ad hoc networks, we extend DU for multi-hop communication. Compared to one-hop communication, multi-hop DU requires efficient path update mechanisms (since multi-hop paths may expire quickly) and new forwarding strategies to maintain NDN benefits (request aggregation and caching) such that only a few messages need to be transmitted over the entire end-to-end path even in case of multiple concurrent requesters. To perform quick retransmission in case of collisions or other transmission errors, we implement and evaluate retransmission timers from related work and compare them to CCNTimer, which is a new algorithm that enables shorter content retrieval times in information-centric wireless multi-hop communication. Yet, in case of intermittent connectivity between requesters and content sources, multi-hop routing protocols may not work because they require continuous end-to-end paths. Therefore, we present agent-based content retrieval (ACR) for delay-tolerant networks. In ACR, requester nodes can delegate content retrieval to mobile agent nodes, which move closer to content sources, can retrieve content and return it to requesters. Thus, ACR exploits the mobility of agent nodes to retrieve content from remote locations. To enable delay-tolerant communication via agents, retrieved content needs to be stored persistently such that requesters can verify its authenticity via original publisher signatures. To achieve this, we develop a persistent caching concept that maintains received popular content in repositories and deletes unpopular content if free space is required. Since our persistent caching concept can complement regular short-term caching in the content store, it can also be used for network caching to store popular delay-tolerant content at edge routers (to reduce network traffic and improve network performance) while real-time traffic can still be maintained and served from the content store.
Resumo:
The social processes that lead to destructive behavior in celebratory crowds can be studied through an agent-based computer simulation. Riots are an increasingly common outcome of sports celebrations, and pose the potential for harm to participants, bystanders, property, and the reputation of the groups with whom participants are associated. Rioting cannot necessarily be attributed to the negative emotions of individuals, such as anger, rage, frustration and despair. For instance, the celebratory behavior (e.g., chanting, cheering, singing) during UConn’s “Spring Weekend” and after the 2004 NCAA Championships resulted in several small fires and overturned cars. Further, not every individual in the area of a riot engages in violence, and those who do, do not do so continuously. Instead, small groups carry out the majority of violent acts in relatively short-lived episodes. Agent-based computer simulations are an ideal method for modeling complex group-level social phenomena, such as celebratory gatherings and riots, which emerge from the interaction of relatively “simple” individuals. By making simple assumptions about individuals’ decision-making and behaviors and allowing actors to affect one another, behavioral patterns emerge that cannot be predicted by the characteristics of individuals. The computer simulation developed here models celebratory riot behavior by repeatedly evaluating a single algorithm for each individual, the inputs of which are affected by the characteristics of nearby actors. Specifically, the simulation assumes that (a) actors possess 1 of 5 distinct social identities (group memberships), (b) actors will congregate with actors who possess the same identity, (c) the degree of social cohesion generated in the social context determines the stability of relationships within groups, and (d) actors’ level of aggression is affected by the aggression of other group members. Not only does this simulation provide a systematic investigation of the effects of the initial distribution of aggression, social identification, and cohesiveness on riot outcomes, but also an analytic tool others may use to investigate, visualize and predict how various individual characteristics affect emergent crowd behavior.