946 resultados para Agar diffusion method
Resumo:
We propose a novel numerical method based on a generalized eigenvalue decomposition for solving the diffusion equation governing the correlation diffusion of photons in turbid media. Medical imaging modalities such as diffuse correlation tomography and ultrasound-modulated optical tomography have the (elliptic) diffusion equation parameterized by a time variable as the forward model. Hitherto, for the computation of the correlation function, the diffusion equation is solved repeatedly over the time parameter. We show that the use of a certain time-independent generalized eigenfunction basis results in the decoupling of the spatial and time dependence of the correlation function, thus allowing greater computational efficiency in arriving at the forward solution. Besides presenting the mathematical analysis of the generalized eigenvalue problem on the basis of spectral theory, we put forth the numerical results that compare the proposed numerical method with the standard technique for solving the diffusion equation.
Resumo:
Hollow nanostructures are used for various applications including catalysis, sensing, and drug delivery. Methods based on the Kirkendall effect have been the most successful for obtaining hollow nanostructures of various multicomponent systems. The classical Kirkendall effect relies on the presence of a faster diffusing species in the core; the resultant imbalance in flux results in the formation of hollow structures. Here, an alternate non-Kirkendall mechanism that is operative for the formation of hollow single crystalline particles of intermetallic PtBi is demonstrated. The synthesis method involves sequential reduction of Pt and Bi salts in ethylene glycol under microwave irradiation. Detailed analysis of the reaction at various stages indicates that the formation of the intermetallic PtBi hollow nanoparticles occurs in steps. The mechanistic details are elucidated using control experiments. The use of microwave results in a very rapid synthesis of intermetallics PtBi that exhibits excellent electrocatalytic activity for formic acid oxidation reaction. The method presented can be extended to various multicomponent systems and is independent of the intrinsic diffusivities of the species involved.
Resumo:
This paper presents a new micro-scale model for solidification of eutectic alloys. The model is based on the enthalpy method and simulates the growth of adjacent alpha and beta phases from a melt of eutectic composition in a two-dimensional Eulerian framework. The evolution of the two phases is obtained from the solution of volume averaged energy and species transport equations which are formulated using the nodal enthalpy and concentration potential values. The three phases are tracked using the beta-phase fraction and the liquid fraction values in all the computational nodes. Solutal convection flow field in the domain is obtained from the solution of volume-averaged momentum and continuity equations. The governing equations are solved using a coupled explicit-implicit scheme. The model is qualitatively validated with Jackson-Hunt theory. Results show expected eutectic growth pattern and proper species transfer and diffusion field ahead of the interface. Capabilities of the model such as lamella width selection, division of lamella into thinner lamellae and the presence of solutal convection are successfully demonstrated. The present model can potentially be incorporated into the existing framework of enthalpy based micro-scale dendritic solidification models thus leading to an efficient generalized microstructure evolution model. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
We demonstrate an electrochemical technique for the large scale synthesis of high quality few layer graphene sheets (FLGS) directly from graphite using oxalic acid (a weak acid) as the electrolyte. One of the interesting observations is that the FLGS are stable at least up to 800 degrees C and hence have potential application in solid oxide fuel cells as a gas diffusion layer.
Resumo:
Mass balance between metal and electrolytic solution, separated by a moving interface, in stable pit growth results in a set of governing equations which are solved for concentration field and interface position (pit boundary evolution), which requires only three inputs, namely the solid metal concentration, saturation concentration of the dissolved metal ions and diffusion coefficient. A combined eXtended Finite Element Model (XFEM) and level set method is developed in this paper. The extended finite element model handles the jump discontinuity in the metal concentrations at the interface, by using discontinuous-derivative enrichment formulation for concentration discontinuity at the interface. This eliminates the requirement of using front conforming mesh and re-meshing after each time step as in conventional finite element method. A numerical technique known as level set method tracks the position of the moving interface and updates it over time. Numerical analysis for pitting corrosion of stainless steel 304 is presented. The above proposed method is validated by comparing the numerical results with experimental results, exact solutions and some other approximate solutions.
Resumo:
An NMR-based approach for rapid characterization of translational diffusion of molecules has been developed. Unlike the conventional method of acquiring a series of 2D C-13 and H-1 spectra, the proposed approach involves a single 2D NMR spectrum, which can be acquired in minutes. Using this method, it was possible to detect the presence of intermediate oligomeric species of diphenylalanine in solution during the process of its selfassembly to form nanotubular structures.
Resumo:
A finite difference method for a time-dependent singularly perturbed convection-diffusion-reaction problem involving two small parameters in one space dimension is considered. We use the classical implicit Euler method for time discretization and upwind scheme on the Shishkin-Bakhvalov mesh for spatial discretization. The method is analysed for convergence and is shown to be uniform with respect to both the perturbation parameters. The use of the Shishkin-Bakhvalov mesh gives first-order convergence unlike the Shishkin mesh where convergence is deteriorated due to the presence of a logarithmic factor. Numerical results are presented to validate the theoretical estimates obtained.
Resumo:
A self-consistent mode coupling theory (MCT) with microscopic inputs of equilibrium pair correlation functions is developed to analyze electrolyte dynamics. We apply the theory to calculate concentration dependence of (i) time dependent ion diffusion, (ii) intermediate scattering function of the constituent ions, and (iii) ion solvation dynamics in electrolyte solution. Brownian dynamics with implicit water molecules and molecular dynamics method with explicit water are used to check the theoretical predictions. The time dependence of ionic self-diffusion coefficient and the corresponding intermediate scattering function evaluated from our MCT approach show quantitative agreement with early experimental and present Brownian dynamic simulation results. With increasing concentration, the dispersion of electrolyte friction is found to occur at increasingly higher frequency, due to the faster relaxation of the ion atmosphere. The wave number dependence of intermediate scattering function, F(k, t), exhibits markedly different relaxation dynamics at different length scales. At small wave numbers, we find the emergence of a step-like relaxation, indicating the presence of both fast and slow time scales in the system. Such behavior allows an intriguing analogy with temperature dependent relaxation dynamics of supercooled liquids. We find that solvation dynamics of a tagged ion exhibits a power law decay at long times-the decay can also be fitted to a stretched exponential form. The emergence of the power law in solvation dynamics has been tested by carrying out long Brownian dynamics simulations with varying ionic concentrations. The solvation time correlation and ion-ion intermediate scattering function indeed exhibit highly interesting, non-trivial dynamical behavior at intermediate to longer times that require further experimental and theoretical studies. (c) 2015 AIP Publishing LLC.
Resumo:
The role of the molar volume on the estimated diffusion parameters has been speculated for decades. The Matano-Boltzmann method was the first to be developed for the estimation of the variation of the interdiffusion coefficients with composition. However, this could be used only when the molar volume varies ideally or remains constant. Although there are no such systems, this method is still being used to consider the ideal variation. More efficient methods were developed by Sauer-Freise, Den Broeder, and Wagner to tackle this problem. However, there is a lack of research indicating the most efficient method. We have shown that Wagner's method is the most suitable one when the molar volume deviates from the ideal value. Similarly, there are two methods for the estimation of the ratio of intrinsic diffusion coefficients at the Kirkendall marker plane proposed by Heumann and van Loo. The Heumann method, like the Matano-Boltzmann method, is suitable to use only when the molar volume varies more or less ideally or remains constant. In most of the real systems, where molar volume deviates from the ideality, it is safe to use the van Loo method. We have shown that the Heumann method introduces large errors even for a very small deviation of the molar volume from the ideal value. On the other hand, the van Loo method is relatively less sensitive to it. Overall, the estimation of the intrinsic diffusion coefficient is more sensitive than the interdiffusion coefficient.
Resumo:
Based on the scaling criteria of polymer flooding reservoir obtained in our previous work in which the gravity and capillary forces, compressibility, non-Newtonian behavior, absorption, dispersion, and diffusion are considered, eight partial similarity models are designed. A new numerical approach of sensitivity analysis is suggested to quantify the dominance degree of relaxed dimensionless parameters for partial similarity model. The sensitivity factor quantifying the dominance degree of relaxed dimensionless parameter is defined. By solving the dimensionless governing equations including all dimensionless parameters, the sensitivity factor of each relaxed dimensionless parameter is calculated for each partial similarity model; thus, the dominance degree of the relaxed one is quantitatively determined. Based on the sensitivity analysis, the effect coefficient of partial similarity model is defined as the summation of product of sensitivity factor of relaxed dimensionless parameter and its relative relaxation quantity. The effect coefficient is used as a criterion to evaluate each partial similarity model. Then the partial similarity model with the smallest effect coefficient can be singled out to approximate to the prototype. Results show that the precision of partial similarity model is not only determined by the number of satisfied dimensionless parameters but also the relative relaxation quantity of the relaxed ones.
Resumo:
Molecular dynamics (MD) simulations are carried out to analyze the diffusion bonding at Cu/Al interfaces. The results indicate that the thickness of the interfacial layer is temperature-dependent, with higher temperatures yielding larger thicknesses. At temperatures below 750 K, the interface thickness is found to increase in a stepwise manner as a function of time. At temperatures above 750 K, the thickness increases rapidly and smoothly. When surface roughness is present, the bonding process consists of three stages. In the first stage, surfaces deform under stress, resulting in increased contact areas. The second stage involves significant plastic deformation at the interface as temperature increases, resulting in the disappearance of interstices and full contact of the surface pair. The last stage entails the diffusion of atoms under constant temperature. The bonded specimens show tensile strengths reaching 88% of the ideal Cu/Al contact strength. (c) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Perturbations are applied to the convective coefficients and source term of a convection-diffusion equation so that second-order corrections may be applied to a second-order exponential scheme. The basic Structure of the equations in the resulting fourth-order scheme is identical to that for the second order. Furthermore, the calculations are quite simple as the second-order corrections may be obtained in a single pass using a second-order scheme. For one to three dimensions, the fourth-order exponential scheme is unconditionally stable. As examples, the method is applied to Burgers' and other fluid mechanics problems. Compared with schemes normally used, the accuracies are found to be good and the method is applicable to regions with large gradients.
Resumo:
The high Reynolds number flow contains a wide range of length and time scales, and the flow
domain can be divided into several sub-domains with different characteristic scales. In some
sub-domains, the viscosity dissipation scale can only be considered in a certain direction; in some
sub-domains, the viscosity dissipation scales need to be considered in all directions; in some
sub-domains, the viscosity dissipation scales are unnecessary to be considered at all.
For laminar boundary layer region, the characteristic length scales in the streamwise and normal
directions are L and L Re-1/ 2 , respectively. The characteristic length scale and the velocity scale in
the outer region of the boundary layer are L and U, respectively. In the neighborhood region of
the separated point, the length scale l<
Resumo:
Fluid diffusion in glassy polymers proceeds in ways that are not explained by the standard diffusion model. Although the reasons for the anomalous effects are not known, much of the observed behavior is attributed to the long times that polymers below their glass transition temperature take to adjust to changes in their condition. The slow internal relaxations of the polymer chains ensure that the material properties are history-dependent, and also allow both local inhomogeneities and differential swelling to occur. Two models are developed in this thesis with the intent of accounting for these effects in the diffusion process.
In Part I, a model is developed to account for both the history dependence of the glassy polymer, and the dual sorption which occurs when gas molecules are immobilized by the local heterogeneities. A preliminary study of a special case of this model is conducted, showing the existence of travelling wave solutions and using perturbation techniques to investigate the effect of generalized diffusion mechanisms on their form. An integral averaging method is used to estimate the penetrant front position.
In Part II, a model is developed for particle diffusion along with displacements in isotropic viscoelastic materials. The nonlinear dependence of the materials on the fluid concentration is taken into account, while pure displacements are assumed to remain in the range of linear viscoelasticity. A fairly general model is obtained for three-dimensional irrotational movements, with the development of the model being based on the assumptions of irreversible thermodynamics. With the help of some dimensional analysis, this model is simplified to a version which is proposed to be studied for Case II behavior.
Resumo:
This thesis is a theoretical work on the space-time dynamic behavior of a nuclear reactor without feedback. Diffusion theory with G-energy groups is used.
In the first part the accuracy of the point kinetics (lumped-parameter description) model is examined. The fundamental approximation of this model is the splitting of the neutron density into a product of a known function of space and an unknown function of time; then the properties of the system can be averaged in space through the use of appropriate weighting functions; as a result a set of ordinary differential equations is obtained for the description of time behavior. It is clear that changes of the shape of the neutron-density distribution due to space-dependent perturbations are neglected. This results to an error in the eigenvalues and it is to this error that bounds are derived. This is done by using the method of weighted residuals to reduce the original eigenvalue problem to that of a real asymmetric matrix. Then Gershgorin-type theorems .are used to find discs in the complex plane in which the eigenvalues are contained. The radii of the discs depend on the perturbation in a simple manner.
In the second part the effect of delayed neutrons on the eigenvalues of the group-diffusion operator is examined. The delayed neutrons cause a shifting of the prompt-neutron eigenvalue s and the appearance of the delayed eigenvalues. Using a simple perturbation method this shifting is calculated and the delayed eigenvalues are predicted with good accuracy.