982 resultados para Adrenergic alpha-1 Receptor Antagonists


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and purpose: D-Fructose-1,6-bisphosphate (FBP) is an intermediate in the glycolytic pathway, exerting pharmacological actions on inflammation by inhibiting cytokine production or interfering with adenosine production. Here, the possible antinociceptive effect of FBP and its mechanism of action in the carrageenin paw inflammation model in mice were addressed, focusing on the two mechanisms described above. Experimental approach: Mechanical hyperalgesia (decrease in the nociceptive threshold) was evaluated by the electronic pressure-metre test; cytokine levels were measured by elisa and adenosine was determined by high performance liquid chromatography. Key results: Pretreatment of mice with FBP reduced hyperalgesia induced by intraplantar injection of carrageenin (up to 54%), tumour necrosis factor alpha (40%), interleukin-1 beta (46%), CXCL1 (33%), prostaglandin E(2) (41%) or dopamine (55%). However, FBP treatment did not alter carrageenin-induced cytokine (tumour necrosis factor alpha and interleukin-1 beta) or chemokine (CXCL1) production. On the other hand, the antinociceptive effect of FBP was prevented by systemic and intraplantar treatment with an adenosine A(1) receptor antagonist (8-cyclopentyl-1,3-dipropylxanthine), suggesting that the FBP effect is mediated by peripheral adenosine acting on A(1) receptors. Giving FBP to mice increased adenosine levels in plasma, and adenosine treatment of paw inflammation presented a similar antinociceptive mechanism to that of FBP. Conclusions and implications: In addition to anti-inflammatory action, FBP also presents an antinociceptive effect upon inflammatory hyperalgesia. Its mechanism of action seems dependent on adenosine production but not on modulation of hyperalgesic cytokine/chemokine production. In turn, adenosine acts peripherally on its A(1) receptor inhibiting hyperalgesia. FBP may have possible therapeutic applications in reducing inflammatory pain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Durand MT, Castania JA, Fazan R Jr, Salgado MC, Salgado HC. Hemodynamic responses to aortic depressor nerve stimulation in conscious L-NAME-induced hypertensive rats. Am J Physiol Regul Integr Comp Physiol 300: R418-R427, 2011. First published November 24, 2010; doi: 10.1152/ajpregu.00463.2010.-The present study investigated whether baroreflex control of autonomic function is impaired when there is a deficiency in NO production and the role of adrenergic and cholinergic mechanisms in mediating reflex responses. Electrical stimulation of the aortic depressor nerve in conscious normotensive and nitro-L-arginine methyl ester (L-NAME)-induced hypertensive rats was applied before and after administration of methylatropine, atenolol, and prazosin alone or in combination. The hypotensive response to progressive electrical stimulation (5 to 90 Hz) was greater in hypertensive (-27 +/- 2 to -64 +/- 3 mmHg) than in normotensive rats (-17 +/- 1 to -46 +/- 2 mmHg), whereas the bradycardic response was similar in both groups (-34 +/- 5 to -92 +/- 9 and -21 +/- 2 to -79 +/- 7 beats/min, respectively). Methylatropine and atenolol showed no effect in the hypotensive response in either group. Methylatropine blunted the bradycardic response in both groups, whereas atenolol attenuated only in hypertensive rats. Prazosin blunted the hypotensive response in both normotensive (43%) and hypertensive rats (53%) but did not affect the bradycardic response in either group. Prazosin plus angiotensin II, used to restore basal arterial pressure, provided hemodynamic responses similar to those of prazosin alone. The triple pharmacological blockade abolished the bradycardic response in both groups but displayed similar residual hypotensive response in hypertensive (-13 +/- 2 to -27 +/- 2 mmHg) and normotensive rats (-10 +/- 1 to -25 +/- 3 mmHg). In conclusion, electrical stimulation produced a well-preserved baroreflex-mediated decrease in arterial pressure and heart rate in conscious L-NAME-induced hypertensive rats. Moreover, withdrawal of the sympathetic drive played a role in the reflex bradycardia only in hypertensive rats. The residual fall in pressure after the triple pharmacological blockade suggests the involvement of a vasodilatory mechanism unrelated to NO or deactivation of alpha(1)-adrenergic receptor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compound 48/80 (C48/80) is a synthetic condensation product of N-methyl-p-methoxyphenethyl am me with formaldehyde and is an experimental drug used since the 1950s to induce anaphylactic shock through histamine release. This study was carried out to further elucidate the mechanism by which this drug induces nitric oxide (NO) release. Our specific goals were: (a) to verify if C48/80`s relaxation occurs through the stimulation of histamine receptors; (b) to evaluate the endothelium-dependent relaxation induced by C48/80; (c) to identify NO as the endothelium-relaxing factor released by C48/80; (d) to identify the NO synthase (NOS) responsible for NO release; and (e) to verify if the relaxation induced by C48/80 is calcium and cyclic guanidine monophosphate (cGMP) dependent. Rabbit aorta segments, with and without endothelium, were suspended in organ chambers (25 ml) filled with Krebs solution maintained at 37 degrees C, bubbled with 95% O-2/5% CO2 (pH 7.4). Phenylephrine was used to contract the segments. Other protocol drugs included H-1- and H-2-receptor antagonists, cyclooxygenase, NOS, guanylyl cyclase and phospholipase C (PLC) inhibitors. Endothelium-dependent relaxation induced by C48/80 was also studied in calcium-free Krebs solution associated with a calcium chelator. In summary, our investigation demonstrated that the C48/80 vasodilating action: (a) does not depend on H-1 and H-2 histamine receptors; (b) is NO endothelium-dependent; (c) is dependent on the endothelial constitutive NOS (NOS-3) isoform activation; (d) is cGMP-dependent; and that NOS-3 activation by C48/80: (a) is independent of PLC up to 25 mu g/ml and (b) is partially dependent of this lipase in higher doses. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background/Aims: Antidepressants are reported to exhibit antiinflammatory effects. However, mechanisms involved in this action have not been elucidated. Thus, the objectives of the present study were (a) to evaluate the effects of amitriptyline on the acute inflammatory process, and (b) to investigate the participation of alpha(1)-adrenergic receptors and glucocorticoids as possible mechanisms implicated in the amitriptyline action on inflammation. Methods and Results: Single and multiple doses of amitriptyline were administered to rats submitted to the carrageenan-induced paw edema model. The results showed a significant antiedematous reaction to amitriptyline, mainly when administered at each elimination half-life. The next step was to evaluate its effects on leukocyte behavior, using intravital microscopy. Amitriptyline produced a significant effect on leukocyte behavior. To investigate possible mechanisms involved, a glucocorticoid receptor antagonist (RU-486) and an alpha(1)-adrenergic receptor antagonist (prazosin) were used. RU-486 administration lacked the ability to decrease the amitriptyline antiinflammatory effects in the carrageenan-induced paw edema model. Prazosin pretreatment potentiated the amitriptyline antiinflammatory effect without presenting an effect per se. Conclusion:The present study shows the ability of amitriptyline to decrease edema and affect leukocyte behavior in an acute inflammatory process; and, for the first time to our knowledge, we suggest the involvement of alpha(1)-adrenoceptors in the antiinflammatory effects of amitriptyline. Copyright (C) 2010 S. Karger AG, Basel

Relevância:

100.00% 100.00%

Publicador:

Resumo:

P2X(1)-type purinoceptors, have been shown to mediate fast transmission between sympathetic varicosities and smooth muscle cells in the mouse vas deferens but the spatial organization of these receptors on the smooth muscle cells remains inconclusive. Voltage clamp techniques were used to estimate the amplitudes of spontaneous excitatory junction currents (SEJCs) in cells of the vas deferens longitudinal smooth muscle layer. These currents involved the activation of about 6% of the P2X-type channels present on the cell, as compared to whole cell currents produced when isolated smooth muscle cells were exposed to maximal concentrations of either ATP or alpha,beta -MeATP. Immunofluorescence staining of the vas deferens with antibodies against P2X(1) receptor showed a diffuse, grainy distribution over the entire membrane of each smooth muscle cell. Anti-P2X(1) staining was not markedly clustered beneath anti-SV2-stained sympathetic varicosities. Similar results were obtained for cells in the urinary bladder. During development, P2X(1) mRNA was detected as early as embryonic day 15 (E15). Increasing intensities of diffuse immunostaining for P2X(1) were observed in the walls of the bladder, tail artery, and aorta from E15 until 6 weeks postnatal. The vas deferens showed increasing intensities of diffuse staining of its smooth muscle layers between 2 and 6 weeks postnatal, consistent with the time-course of development of fast purinergic transmission described previously. Together, the results suggest that the response of smooth muscle of the vas deferens to ATP released from sympathetic varicosities relies on rapidly desensitizing P2X(1) receptors, distributed diffusely across the smooth muscle cell surface. Synapse 42:1-11, 2001. (C) 2001 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutations in the extracellular M2-M3 loop of the glycine receptor (GlyR) alpha1 subunit have been shown previously to affect channel gating. In this study, the substituted cysteine accessibility method was used to investigate whether a structural rearrangement of the M2-M3 loop accompanies GlyR activation. All residues from R271C to V277C were covalently modified by both positively charged methanethiosulfonate ethyltrimethylammonium (MTSET) and negatively charged methanethiosulfonate ethylsulfonate (MTSES), implying that these residues form an irregular surface loop. The MTSET modification rate of all residues from R271C to K276C was faster in the glycine-bound state than in the unliganded state. MTSES modification of A272C, L274C, and V277C was also faster in the glycine-bound state. These results demonstrate that the surface accessibility of the M2-M3 loop is increased as the channel transitions from the closed to the open state, implying that either the loop itself or an overlying domain moves during channel activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of the antihelmintic, ivermectin, were investigated in recombinantly expressed human alpha (1) homomeric and alpha (1)beta heteromeric glycine receptors (GlyRs), At low (0.03 muM) concentrations ivermectin potentiated the response to sub-saturating glycine concentrations, and at higher (greater than or equal to0.03 muM) concentrations it irreversibly activated both alpha (1) homomeric and alpha (1)beta heteromeric GlyRs. Relative to glycine-gated currents, ivermectin-gated currents exhibited a dramatically reduced sensitivity to inhibition by strychnine, picrotoxin, and zinc. The insensitivity to strychnine could not be explained by ivermectin preventing the access of strychnine to its binding site. Furthermore, the elimination of a known glycine- and strychnine-binding site by site-directed mutagenesis had little effect on ivermectin sensitivity, demonstrating that the ivermectin- and glycine-binding sites were not identical. Ivermectin strongly and irreversibly activated a fast-desensitizing mutant GlyR after it had been completely desensitized by a saturating concentration of glycine. Finally, a mutation known to impair dramatically the glycine signal transduction mechanism had little effect on the apparent affinity or efficacy of ivermectin, Together, these findings indicate that ivermectin activates the GlyR by a novel mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The beta -amino acid, taurine, is a full agonist of the human glycine receptor al subunit when recombinantly expressed in a mammalian (HEK293) cell line, but a partial agonist of the same receptor when expressed in Xenopus oocytes. Several residues in the Ala101-Thr112 domain have previously been identified as determinants of beta -amino acid binding and gating mechanisms in Xenopus oocyte-expressed receptors. The present study used the substituted cysteine accessibility method to investigate the role of this domain in controlling taurine-specific binding and gating mechanisms of glycine receptors recombinantly expressed in mammalian cells. Asn102 and Glu103 are identified as taurine and glycine binding sites, whereas Ala101 is eliminated as a possible binding site. The N102C mutation also abolished the antagonistic actions of taurine, indicating that this site does not discriminate between the putative agonist- and antagonist-bound conformations of beta -amino acids. The effects of mutations from Lys104-Thr112 indicate that the mechanism by which this domain controls beta -amino acid-specific binding and gating processes differs substantially depending on whether the receptor is expressed in mammalian cells or Xenopus oocytes. Thr112 is the only domain element in mammalian cell-expressed GlyRs which was demonstrated to discriminate between glycine and taurine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the residues responsible for the reduced picrotoxin sensitivity of the alpha beta heteromeric glycine receptor relative to the alpha homomeric receptor. By analogy with structurally related receptors, the beta subunit M2 domain residues P278 and F282 were considered the most likely candidates for mediating this effect. These residues align with G254 and T258 of the alpha subunit. The T258A, T258C and T258F mutations dramatically reduced the picrotoxin sensitivity of the alpha homomeric receptor. Furthermore, the converse F282T mutation in the beta subunit increased the picrotoxin sensitivity of the alpha beta heteromeric receptor. The P278G mutation in the beta subunit did not affect the picrotoxin sensitivity of the alpha beta heteromer. Thus, a ring of five threonines at the M2 domain depth corresponding to alpha subunit T258 is specifically required for picrotoxin sensitivity. Mutations to alpha subunit T258 also profoundly influenced the apparent glycine affinity. A substituted cysteine accessibility analysis revealed that the T258C sidechain increases its pore exposure in the channel open state. This provides further evidence for an allosteric mechanism of picrotoxin inhibition, but renders it unlikely that picrotoxin las an allosterically acting 'competitive' antagonist) binds to this residue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pre- and postsynaptic actions of exogenously applied ATP were investigated in intact and dissociated parasympathetic neurotics of rat submandibular ganglia. Nerve-evoked excitatory postsynaptic potentials (EPSPs) were not inhibited by the purinergic receptor antagonists, suramin and pyridoxal-phosphate-6-azophenyl-2 ' ,4 ' -disulphonic acid (PPADS), or the desensitising agonist, alpha,beta -methylene ATP. In contrast. EPSPs were abolished by the nicotinic acetylcholine receptor antagonists, hexamethonium and mecamylamine. Focal application of ATP (100 muM) had no effect on membrane potential of the postsynaptic neurone or on the amplitude of spontaneous EPSPs. Taken together, these results suggest the absence of functional purinergic (P2) receptors on the postganglionic neurone in situ. In contrast, focally applied ATP (100 muM) reversibly inhibited nerve-evoked EPSPs. Similarly, bath application of the non-hydrolysable analogue of ATP, ATP gammaS, reversibly depressed EPSPs amplitude, The inhibitory effects of ATP and ATP gammaS on nerve-evoked transmitter release were antagonised by bath application of either PPADS or suramin, suggesting ATP activates a presynaptic P2 purinoceptor to inhibit acetylcholine release from preganglionic nerves in the submandibular ganglia. In acutely dissociated postganglionic neurotics from rat submandibular ganglia. focal application of ATP (100 LM) evoked an inward current and subsequent excitatory response and action potential firing, which was reversibly inhibited by PPADS (10 muM). The expression of P2X purinoceptors in wholemount and dissociated submandibular ganglion neurones was examined using polyclonal antibodies raised against the extracellular domain of six P2X purinoceptor subtypes (P2X(1-6)). In intact wholemount preparations, only the P2X(5) purinoceptor subtype was found to be expressed in the submandibular ganglion neurones and no P2X immunoreactivity was detected in the nerve fibres innervating the ganglion. Surprisingly, in dissociated submandibular ganglion neurones, high levels of P2X(2) and P2X(4) purinoceptors immunoreactivity were found on the cell surface. This increase in expression of P2X(2) and P2X(4) purinoceptors in dissociated submandibular neurones could explain the increased responsiveness of the neurotics to exogenous ATP. We conclude that disruption of ganglionic transmission in vivo by either nerve damage or synaptic blockade may up-regulate P2X expression or availability and alter neuronal excitability. (C) 2001 IBRO. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Essential hypertension is a common disorder, associated with increased endothelin-l-mediated vasoconstrictor tone at rest. We hypothesized that increased vasoconstrictor activity of endothelin-1 might explain why the normal decrease in peripheral vascular resistance in response to exercise is attenuated in hypertensive patients. Therefore, we investigated the effect of endothelin A (ETA) receptor blockade on the vasodilator response to handgrip exercise. Forearm blood flow responses to handgrip exercise (15%, 30%, and 45% of maximum voluntary contraction) were assessed in hypertensive patients and matched normotensive subjects, before and after intra-arterial infusions of the ETA receptor antagonist BQ-123; a control dilator, hydralazine; and placebo (saline). Preinfusion (baseline) vasodilation in response to exercise was significantly attenuated at each workload in hypertensive patients compared with normotensive subjects. Intra-arterial infusions of hydralazine and saline did not increase the vasodilator response to exercise in either hypertensives or normotensives at any workload. The vasodilator response to exercise was markedly enhanced after BQ-123 at the 2 higher workloads in hypertensives (157 +/- 48%, P < 0.01; 203 &PLUSMN; 58%, P < 0.01) but not in normotensives. This suggests that the impaired vasodilator response to exercise in hypertensive patients is, at least in part, a functional limitation caused by endogenous ETA receptor-mediated vasoconstriction. Treatment with endothelin receptor antagonists may, therefore, increase exercise capacity in essential hypertension.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diabetes mellitus has reached epidemic proportions in many countries and is the most common cause of end stage renal disease (ESRD). The angiotensin II receptor-1 (AT1) antagonists losartan and irbesartan have recently been evaluated as renoprotective agents in large clinical trials of patients with Type 2 diabetes and nephropathy. In the Reduction of End points in Non-insulin-dependent diabetes mellitus with the Angiotensin II Antagonist (RENAAL) study, losartan decreased the number of patients reaching the primary end point of a composite of measures of neuropathy. The relative risk reduction was ~ 15% with losartan and this was due to a reduction in both the doubling of creatinine concentration (25%) and of ESRD (28%) but not in death. In the Irbesartan Diabetic Nephropathy Trial (IDNT), the beneficial effect of irbesartan was mainly against the doubling of the baseline creatinine concentration (37% risk reduction) but there was also a 20% reduction in the onset of ESRD. Irbesartan had no effect on mortality. Beneficial effects occurred in addition to blood pressure being controlled by agents other than the AT1 antagonists. These clinical trials suggest that there may be a class renoprotective action with AT1 antagonists, although the mechanism is not clear. Patients with Type 2 diabetes and nephropathy should receive either an AT1 antagonist or the angiotensin converting enzyme inhibitor ramipril to ensure renoprotection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Histidines 107 and 109 in the glycine receptor ( GlyR) alpha(1) subunit have previously been identified as determinants of the inhibitory zinc-binding site. Based on modeling of the GlyR alpha(1) subunit extracellular domain by homology to the acetylcholine-binding protein crystal structure, we hypothesized that inhibitory zinc is bound within the vestibule lumen at subunit interfaces, where it is ligated by His(107) from one subunit and His(109) from an adjacent subunit. This was tested by co-expressing alpha(1) subunits containing the H107A mutation with alpha(1) subunits containing the H109A mutation. Although sensitivity to zinc inhibition is markedly reduced when either mutation is individually incorporated into all five subunits, the GlyRs formed by the co-expression of H107A mutant subunits with H109A mutant subunits exhibited an inhibitory zinc sensitivity similar to that of the wild type alpha(1) homomeric GlyR. This constitutes strong evidence that inhibitory zinc is coordinated at the interface between adjacent alpha(1) subunits. No evidence was found for beta subunit involvement in the coordination of inhibitory zinc, indicating that a maximum of two zinc-binding sites per alpha(1)beta receptor is sufficient for maximal zinc inhibition. Our data also show that two zinc-binding sites are sufficient for significant inhibition of alpha(1) homomers. The binding of zinc at the interface between adjacent alpha(1) subunits could restrict intersubunit movements, providing a feasible mechanism for the inhibition of channel activation by zinc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To compare the acute and sustained renal hemodynamic effects on hypertensive patients of 100 mg irbesartan and 20 mg enalapril each once daily. PATIENTS: Twenty patients (aged 35-70 years) with uncomplicated, mild-to-moderate essential hypertension and normal serum creatinine levels completed this study. STUDY DESIGN: After random allocation to treatment (n=10 per group), administration schedule (morning or evening) was determined by further random allocation, with crossover of schedules after 6 weeks' therapy. Treatment and administration assignments were double-blind. Twenty-four-hour ambulatory blood pressure was monitored before and after 6 and 12 weeks of therapy. Renal hemodynamics were determined on the first day of drug administration and 12 and 24 h after the last dose during chronic treatment. RESULTS: Administration of each antihypertensive agent induced a renal vasodilatation with no significant change in glomerular filtration rate. However, the time course appeared to differ: irbesartan had no significant acute effect 4 h after the first dose, but during chronic administration a renal vasodilatory response was found 12 and 24 h after the dose; enalapril was effective acutely and 12 h after administration, but no residual effect was found 24 h after the dose. Both antihypertensive agents lowered mean ambulatory blood pressure effectively, with no significant difference between treatments or between administration schedules (morning versus evening). CONCLUSIONS: Irbesartan and enalapril have comparable effects on blood pressure and renal hemodynamics in hypertensive patients with normal renal functioning. However, the time profiles of the renal effects appear to differ, which might be important for long-term renoprotective effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

GABA receptors are ubiquitous in the cerebral cortex and play a major role in shaping responses of cortical neurons. GABAA and GABAB receptor subunit expression was visualized by immunohistochemistry in human auditory areas from both hemispheres in 9 normal subjects (aged 43-85 years; time between death and fixation 6-24 hours) and in 4 stroke patients (aged 59-87 years; time between death and fixation 7-24 hours) and analyzed qualitatively for GABAA and semiquantitatively for GABAB receptor subunits. In normal brains, the primary auditory area (TC) and the surrounding areas TB and TA displayed distinct GABAA receptor subunit labeling with differences among cortical layers and areas. In postacute and chronic stroke we found a layer-selective downregulation of the alpha-2 subunit in the anatomically intact cerebral cortex of the intact and of the lesioned hemisphere, whereas the alpha-1, alpha-3 and beta-2/3 subunits maintained normal levels of expression. The GABAB receptors had a distinct laminar pattern in auditory areas and minor differences among areas. Unlike in other pathologies, there is no modulation of the GABAB receptor expression in subacute or chronic stroke.