980 resultados para Active Monitoring


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Lake Wivenhoe Integrated Wireless Sensor Network is conceptually similar to traditional SCADA monitoring and control approaches. However, it is applied in an open system using wireless devices to monitor processes that affect water quality at both a high spatial and temporal frequency. This monitoring assists scientists to better understand drivers of key processes that influence water quality and provide the operators with an early warning system if below standard water enters the reservoir. Both of these aspects improve the safety and efficient delivery of drinking water to the end users.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Population ageing is one of the major challenges of the 21st century and societies need to optimize opportunities for active ageing. This thesis explored how the built environment impacts the mobility and participation within the community. A combination of person-based GPS tracking and in-depth interviews was used to collect data on transportation use and engagement in activities of older people living within Brisbane. It showed that the built environment has a strong impact on mobility. To enable healthy and active ageing modern communities need to overcome car dependency and provide mobility options that are tailored towards older people’s needs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cyclic voltammetry behaviour of gold in aqueous media is often regarded in very simple terms as a combination of two distinct processes, double layer charging/discharging and monolayer oxide formation/removal. This view is questioned here on the basis of both the present results and earlier independent data by other authors. It was demonstrated in the present case that both severe cathodization or thermal pretreatment of polycrystalline gold in acid solution resulted in the appearance of substantial Faradaic responses in the double layer region. Such anamolous behaviour, as outlined recently also for other metals, is rationalized in terms of the presence of active metal atoms (which undergo premonolayer oxidation) at the electrode surface. Such behaviour, which is also assumed to correspond to that of active sites on conventional gold surfaces, is assumed to be of vital importance in electrocatalysis; in many instances the latter process is also quite marked in the double layer region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metastable, active, or nonequilibrium states due to the presence of abnormal structures and various types of defects are well known in metallurgy. The role of such states at gold surfaces in neutral aqueous media (an important electrode system in the microsensor area) was explored using cyclic voltammetry. It was demonstrated that, as postulated in earlier work from this laboratory, there is a close relationship between premonolayer oxidation, multilayer hydrous oxide reduction and electrocatalytic behaviour in the case of this and other metal electrode systems. Some of the most active, and therefore most important, entities at surfaces (e.g., metal adatoms) are not readily imageable or detectable by high resolution surface microscopy techniques. Cyclic voltammetry, however, provides significant, though not highly specific, information about such species. The main conclusion is that further practical and theoretical work on active states of metal surfaces is highly desirable as their behaviour is not simple and is of major importance in many electrocatalytic processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation of macroporous honeycomb gold using an electrochemically generated hydrogen bubble template is described. The synthesis procedure induces the formation of highly active surfaces with enhanced electrocatalytic and surface enhanced Raman scattering properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Even though gold is the noblest of metals, a weak chemisorber and is regarded as being quite inert, it demonstrates significant electrocatalytic activity in its nanostructured form. It is demonstrated here that nanostructured and even evaporated thin films of gold are covered with active sites which are responsible for such activity. The identification of these sites is demonstrated with conventional electrochemical techniques such as cyclic voltammetry as well as a large amplitude Fourier transformed alternating current (FT-ac) method under acidic and alkaline conditions. The latter technique is beneficial in determining if an electrode process is either Faradaic or capacitive in nature. The observed behaviour is analogous to that observed for activated gold electrodes whose surfaces have been severely disrupted by cathodic polarisation in the hydrogen evolution region. It is shown that significant electrochemical oxidation responses occur at discrete potential values well below that for the formation of the compact monolayer oxide of bulk gold and are attributed to the facile oxidation of surface active sites. Several electrocatalytic reactions are explored in which the onset potential is determined by the presence of such sites on the surface. Significantly, the facile oxidation of active sites is used to drive the electroless deposition of metals such as platinum, palladium and silver from their aqueous salts on the surface of gold nanostructures. The resultant surface decoration of gold with secondary metal nanoparticles not only indicates regions on the surface which are rich in active sites but also provides a method to form interesting bimetallic surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Voltammetric techniques have been introduced to monitor the formation of gold nanoparticles produced via the reaction of the amino acid glycyl-L-tyrosine with Au(III) (bromoaurate) in 0.05 M KOH conditions. The alkaline conditions facilitate amino acid binding to Au(III), inhibit the rate of reduction to Au(0), and provide an excellent supporting electrolyte for voltammetric studies. Data obtained revealed that a range of time-dependent gold solution species are involved in gold nanoparticle formation and that the order in which reagents are mixed is critical to the outcome. Concomitantly with voltammetric measurements, the properties of gold nanoparticles formed are probed by examination of electronic spectra in order to understand how the solution environment present during nanoparticle growth affects the final distribution of the nanoparticles. Images obtained by the ex situ transmission electron microscopy (TEM) technique enable the physical properties of the nanoparticles isolated in the solid state to be assessed. Use of this combination of in situ and ex situ techniques provides a versatile framework for elucidating the details of nanoparticle formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The higher harmonic components available from large-amplitude Fourier-transformed alternating current (FT-ac) voltammetry enable the surface active state of a copper electrode in basic media to be probed in much more detail than possible with previously used dc methods. In particular, the absence of capacitance background current allows low-level Faradaic current contributions of fast electron-transfer processes to be detected; these are usually completely undetectable under conditions of dc cyclic voltammetry. Under high harmonic FT-ac voltammetric conditions, copper electrodes exhibit well-defined and reversible premonolayer oxidation responses at potentials within the double layer region in basic 1.0 M NaOH media. This process is attributed to oxidation of copper adatoms (Cu*) of low bulk metal lattice coordination numbers to surface-bonded, reactive hydrated oxide species. Of further interest is the observation that cathodic polarization in 1.0 M NaOH significantly enhances the current detected in each of the fundamental to sixth FT-ac harmonic components in the Cu*/Cu hydrous oxide electron-transfer process which enables the underlying electron transfer processes in the higher harmonics to be studied under conditions where the dc capacitance response is suppressed; the results support the incipient hydrous oxide adatom mediator (IHOAM) model of electrocatalysis. The underlying quasi-reversible interfacial Cu*/Cu hydrous oxide process present under these conditions is shown to mediate the reduction of nitrate at a copper electrode, while the mediator for the hydrazine oxidation reaction appears to involve a different mediator or active state redox couple. Use of FT-ac voltammetry offers prospects for new insights into the nature of active sites and electrocatalysis at the electrode/solution interface of Group 11 metals in aqueous media.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scanning electrochemical microscopy (SECM), in the substrate generation–tip collection (SG-TC) mode, has been used to detect the cuprous ion intermediate formed during the course of electrodeposition of Cu metal from aqueous solution. Addition of chloride is confirmed to strongly stabilize the ion in aqueous solution and enhance the rate of Cu electrodeposition. This SECM method in the SG-TC mode offers an alternative to the rotating ring disk electrode (RRDE) technique for in situ studies on the effect of plating bath additives in metal electrodeposition. An attractive feature of the SECM relative to the RRDE method is that it allows qualitative aspects of the electrodeposition process to be studied in close proximity to the substrate in a simple and direct fashion using an inexpensive probe, and without the need for forced convection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The creation of electrocatalysts based on noble metals has received a significant amount of research interest due to their extensive use as fuel cell catalysts and electrochemical sensors. There have been many attempts to improve the activity of these metals through creating nanostructures, as well as post-synthesis treatments based on chemical, electrochemical, sonochemical and thermal approaches. In many instances these methods result in a material with active surface states, which can be considered to be adatoms or clusters of atoms on the surface that have a low lattice co-ordination number making them more prone to electrochemical oxidation at a wide range of potentials that are significantly less positive than those of their bulk metal counterparts. This phenomenon has been termed pre-monolayer oxidation and has been reported to occur on a range of metallic surfaces. In this work we present findings on the presence of active sites on Pd that has been: evaporated as a thin film; electrodeposited as nanostructures; as well as commercially available Pd nanoparticles supported on carbon. Significantly, advantage is taken of the low oxidation potential of these active sites whereby bimetallic surfaces are created by the spontaneous deposition of Ag from AgNO3 to generate Pd/Ag surfaces. Interestingly this approach does not increase the surface area of the original metal but has significant implications for its further use as an electrode material. It results in the inhibition or promotion of electrocatalytic activity which is highly dependent on the reaction of interest. As a general approach the decoration of active catalytic materials with less active metals for a particular reaction also opens up the possibility of investigating the role of the initially present active sites on the surface and identifying the degree to which they are responsible for electrocatalytic activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A battery electrode for a lithium ion battery comprising an elec. conductive substrate having an electrode layer applied thereto, characterized in that the electrode layer includes an org. material having high alky., or an org. material which can be dissolved in org. solvents, or an org. material having an imide group(s) and aminoacetal group(s), or an org. material that chelates with or bonds with a metal substrate or that chelates with or bonds with an active material in the electrode layer. The org. material may be guanidine carbonate. [on SciFinder(R)]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Today, the majority of semiconductor fabrication plants (fabs) conduct equipment preventive maintenance based on statistically-derived time- or wafer-count-based intervals. While these practices have had relative success in managing equipment availability and product yield, the cost, both in time and materials, remains high. Condition-based maintenance has been successfully adopted in several industries, where costs associated with equipment downtime range from potential loss of life to unacceptable affects to companies’ bottom lines. In this paper, we present a method for the monitoring of complex systems in the presence of multiple operating regimes. In addition, the new representation of degradation processes will be used to define an optimization procedure that facilitates concurrent maintenance and operational decision-making in a manufacturing system. This decision-making procedure metaheuristically maximizes a customizable cost function that reflects the benefits of production uptime, and the losses incurred due to deficient quality and downtime. The new degradation monitoring method is illustrated through the monitoring of a deposition tool operating over a prolonged period of time in a major fab, while the operational decision-making is demonstrated using simulated operation of a generic cluster tool.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis examines the stewardship and investment style monitoring by managers and boards of U.S. equity funds. Results indicate that complying with a fund’s declared style, especially in value-growth dimension, remains a challenge for fund managers and boards, and that style-based investors should be aware of the risk of style drift since fund managers and boards do not always monitor the fund’s investment style as stated in the prospectus. Results also show that the quality of fund stewardship, as reflected by fund board quality, corporate culture, manager compensation, regulatory history, and fees are effective in ensuring that fund managers and boards perform their fiduciary obligation by increasing monitoring of the fund investment style.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Piezoelectric composites comprising an active phase of ferroelectric ceramic and a polymer matrix have recently attracted numerous sensory applications. However, it remains a major challenge to further improve their electromechanical response for advanced applications such as precision control and monitoring systems. We hereby investigated the incorporation of graphene platelets (GnPs) and multi-walled carbon nanotubes (MWNTs), each with various weight fractions, into PZT (lead zirconate titanate)/epoxy composites to produce three-phase nanocomposites. The nanocomposite films show markedly improved piezoelectric coefficients and electromechanical responses (50%) besides an enhancement of ~200% in stiffness. Carbon nanomaterials strengthened the impact of electric field on the PZT particles by appropriately raising the electrical conductivity of epoxy. GnPs have been proved far more promising in improving the poling behavior and dynamic response than MWNTs. The superior dynamic sensitivity of GnP-reinforced composite may be caused by GnPs’ high load transfer efficiency arising from their two-dimensional geometry and good compatibility with the matrix. Reduced acoustic impedance mismatch resulted from the improved thermal conductance may also contribute to the higher sensitivity of GnP-reinforced composite. This research pointed out the potential of employing GnPs to develop highly sensitive piezoelectric composites for sensing applications.