987 resultados para Acid detergent insoluble fiber
Resumo:
The L-arginine/agmatine antiporter AdiC is a key component of the arginine-dependent extreme acid resistance system of Escherichia coli. Phylogenetic analysis indicated that AdiC belongs to the amino acid/polyamine/organocation (APC) transporter superfamily having sequence identities of 15-17% to eukaryotic and human APC transporters. For functional and structural characterization, we cloned, overexpressed, and purified wild-type AdiC and the point mutant AdiC-W293L, which is unable to bind and consequently transport L-arginine. Purified detergent-solubilized AdiC particles were dimeric. Reconstitution experiments yielded two-dimensional crystals of AdiC-W293L diffracting beyond 6 angstroms resolution from which we determined the projection structure at 6.5 angstroms resolution. The projection map showed 10-12 density peaks per monomer and suggested mainly tilted helices with the exception of one distinct perpendicular membrane spanning alpha-helix. Comparison of AdiC-W293L with the projection map of the oxalate/formate antiporter from Oxalobacter formigenes, a member from the major facilitator superfamily, indicated different structures. Thus, two-dimensional crystals of AdiC-W293L yielded the first detailed view of a transport protein from the APC superfamily at sub-nanometer resolution.
Resumo:
The term, "insoluble residue," as used in this report is that portion of the original rock sample remaining after the sample has been digested by a mixture of one part hydrocloric acid and two parts water. The remains or insoluble residue from this acid treatment may vary from nothing to I00 percent.
Resumo:
A study was designed to collect a database of Iowa feedlot rations for determination of effective neutral detergent fiber (NDF) in complete diets from fiber analysis and particle size determination of individual feed ingredients and compare this with particle size determination of mixed wet rations. Seventy-one beef finishing total mixed rations were collected by ISU Extension Beef Field Specialists across Iowa. Producers were asked to complete a form assessing the acidosis risk associated with each ration. The average NDF of these diets was 25.9%. Of the total mixed rations 1.33 % remained in the top tray (>.75 in.), 47.27 % remained in the middle tray (>.31 in.), and 50.88 % was smaller than the .31 in screen. The effective NDF (eNDF) calculated from the eNDF of the ingredients averaged 10.56%. Estimated eNDF from total diet NDF and the percentage of the total diet in the top and middle trays averaged 12.47%. The calculated eNDF from non-grain sources alone averaged 3.6%. The percentage of digestive deads was weakly related to the percentage of the ration in the bottom tray (r=.19), the percentage in the top tray (r=- .46) and the effective NDF of the ration (r=-.23). The percentage of bloat was related to the total NDF of the diet (r=.28) and the effective fiber from non-grain sources (r=-.23). The number of off-feed incidences was related to the dry matter of the ration (r=.38), the apparent eNDF (r=-.28) and the percentage of ration in the bottom tray (r=.24). This study confirms that there is some relationship between effective NDF of the diet, effective NDF from non-grain sources or diet particle size; and acidosis indicators. These relationships are weak, however, indicating that other factors such as feedbunk management, feed processing, feed presentation and feed mixing likely also play a role in the incidence of acidosis in feedlot cattle.
Resumo:
Heteromeric amino acid transporters (HATs) are the unique example, known in all kingdoms of life, of solute transporters composed of two subunits linked by a conserved disulfide bridge. In metazoans, the heavy subunit is responsible for the trafficking of the heterodimer to the plasma membrane, and the light subunit is the transporter. HATs are involved in human pathologies such as amino acidurias, tumor growth and invasion, viral infection and cocaine addiction. However structural information about interactions between the heavy and light subunits of HATs is scarce. In this work, transmission electron microscopy and single-particle analysis of purified human 4F2hc/L-type amino acid transporter 2 (LAT2) heterodimers overexpressed in the yeast Pichia pastoris, together with docking analysis and crosslinking experiments, reveal that the extracellular domain of 4F2hc interacts with LAT2, almost completely covering the extracellular face of the transporter. 4F2hc increases the stability of the light subunit LAT2 in detergent-solubilized Pichia membranes, allowing functional reconstitution of the heterodimer into proteoliposomes. Moreover, the extracellular domain of 4F2hc suffices to stabilize solubilized LAT2. The interaction of 4F2hc with LAT2 gives insights into the structural bases for light subunit recognition and the stabilizing role of the ancillary protein in HATs.
Resumo:
Human heteromeric amino acid transporters (HATs) play key roles in renal and intestinal re-absorption, cell redox balance and tumor growth. These transporters are composed of a heavy and a light subunit, which are connected by a disulphide bridge. Heavy subunits are the two type II membrane N-glycoproteins rBAT and 4F2hc, while L-type amino acid transporters (LATs) are the light and catalytic subunits of HATs. We tested the expression of human 4F2hc and rBAT as well as seven light subunits in the methylotrophic yeast Pichia pastoris. 4F2hc and the light subunit LAT2 showed the highest expression levels and yields after detergent solubilization. Co-transformation of both subunits in Pichia cells resulted in overexpression of the disulphide bridge-linked 4F2hc/LAT2 heterodimer. Two sequential affinity chromatography steps were applied to purify detergent-solubilized heterodimers yielding ~1mg of HAT from 2l of cell culture. Our results indicate that P. pastoris is a convenient system for the expression and purification of human 4F2hc/LAT2 for structural studies.
Resumo:
Several amino acid diagenetic reactions, which take place in the deep-sea sedimentary environment, were investigated, using various Deep Sea Drilling Project (DSDP) cores. Initially it was found that essentially all the amino acids in sediments are bound in peptide linkages; but, with increasing age, the peptide bonds undergo slow hydrolysis that results in an increasingly larger fraction of amino acids in the free state. The hydrolysis half-life in calcareous sediments was estimated to be ~1-2 million years, while in non-carbonate sediment the hydrolysis rate may be considerably slower. The amino acid compositions and the extent of racemization of several amino acids were determined in various fractions isolated from the sediments. These analyses demonstrated that the mechanism, kinetics, and rate of amino acid diagenesis are highly dependent upon the physical state (i.e., free, bound, etc.) in which the amino acids exist in the sedimentary environment. In the free state, serine and threonine were found to decompose primarily by a dehydration reaction, while in the bound state (residue or HCl-insoluble fraction) a reversible aldol-cleavage reaction is the main decomposition pathway of these amino acids. The change in amino acid composition of the residue fraction with time was suggested to be due to the hydrolysis of peptide bonds, while in foraminiferal tests the compositional changes over geological time are the result of various decomposition reactions. Reversible first-order racemization kinetics are not observed for free amino acids in sediments. The explanation for these anomalous kinetics involves a complex reaction series which includes the hydrolysis of peptide bonds and the very rapid racemization of free amino acids. The racemization rates of free amino acids in sediments were found to be many orders of magnitude faster than those predicted from elevated temperature experiments using free amino acids in aqueous solution. The racemization rate enhancement of free amino acids in sediments may be due to the catalysis of the reaction by trace metals. Reversible first-order kinetics are followed for amino acids in the residue fraction isolated from sediments; the rate of racemization in this fraction is slower than that predicted for protein-bound amino acids. Various applications of amino acid diagenetic reactions are discussed. Racemization and the decomposition reaction of serine and threonine can both be used, with certain limitations, to make rough age estimates of deep-sea sediments back to several million years. The extent of racemization in foraminiferal tests which have been dated by some other independent technique can be used to estimate geothermal gradients, and thus heat flows, and to evaluate the bottom water temperature history in certain oceanic areas.
Resumo:
Lipids, humic acids, and kerogens were isolated from Site 582 sediment cores. The amount of each organic fraction in the samples taken from 5.6 to 694 m sub-bottom is almost unrelated to depth of the sample. A study of the oxidation of organic matter by the alkaline KMnO4 method reveals that distribution of polymethylene chain lengths of the kerogens and humic acids in the marine sediments differ from those in lacustrine sediments. The order of abundance of these chains in the sediments is: kerogens, 52-66% of total methylene chains; humic acids, 25-33%; and lipids, 8-16%. The results suggest that polyunsaturated fatty acids (>=4 double bonds) may be important in the formation of polymethylene chains of kerogens and humic acids in marine sediments.
Resumo:
La caracterización de los cultivos cubierta (cover crops) puede permitir comparar la idoneidad de diferentes especies para proporcionar servicios ecológicos como el control de la erosión, el reciclado de nutrientes o la producción de forrajes. En este trabajo se estudiaron bajo condiciones de campo diferentes técnicas para caracterizar el dosel vegetal con objeto de establecer una metodología para medir y comparar las arquitecturas de los cultivos cubierta más comunes. Se estableció un ensayo de campo en Madrid (España central) para determinar la relación entre el índice de área foliar (LAI) y la cobertura del suelo (GC) para un cultivo de gramínea, uno de leguminosa y uno de crucífera. Para ello se sembraron doce parcelas con cebada (Hordeum vulgare L.), veza (Vicia sativa L.), y colza (Brassica napus L.). En 10 fechas de muestreo se midieron el LAI (con estimaciones directas y del LAI-2000), la fracción interceptada de la radiación fotosintéticamente activa (FIPAR) y la GC. Un experimento de campo de dos años (Octubre-Abril) se estableció en la misma localización para evaluar diferentes especies (Hordeum vulgare L., Secale cereale L., x Triticosecale Whim, Sinapis alba L., Vicia sativa L.) y cultivares (20) en relación con su idoneidad para ser usadas como cultivos cubierta. La GC se monitorizó mediante análisis de imágenes digitales con 21 y 22 muestreos, y la biomasa se midió 8 y 10 veces, respectivamente para cada año. Un modelo de Gompertz caracterizó la cobertura del suelo hasta el decaimiento observado tras las heladas, mientras que la biomasa se ajustó a ecuaciones de Gompertz, logísticas y lineales-exponenciales. Al final del experimento se determinaron el C, el N y el contenido en fibra (neutrodetergente, ácidodetergente y lignina), así como el N fijado por las leguminosas. Se aplicó el análisis de decisión multicriterio (MCDA) con objeto de obtener un ranking de especies y cultivares de acuerdo con su idoneidad para actuar como cultivos cubierta en cuatro modalidades diferentes: cultivo de cobertura, cultivo captura, abono verde y forraje. Las asociaciones de cultivos leguminosas con no leguminosas pueden afectar al crecimiento radicular y a la absorción de N de ambos componentes de la mezcla. El conocimiento de cómo los sistemas radiculares específicos afectan al crecimiento individual de las especies es útil para entender las interacciones en las asociaciones, así como para planificar estrategias de cultivos cubierta. En un tercer ensayo se combinaron estudios en rhizotrones con extracción de raíces e identificación de especies por microscopía, así como con estudios de crecimiento, absorción de N y 15N en capas profundas del suelo. Las interacciones entre raíces en su crecimiento y en el aprovisionamiento de N se estudiaron para dos de los cultivares mejor valorados en el estudio previo: uno de cebada (Hordeum vulgare L. cv. Hispanic) y otro de veza (Vicia sativa L. cv. Aitana). Se añadió N en dosis de 0 (N0), 50 (N1) y 150 (N2) kg N ha-1. Como resultados del primer estudio, se ajustaron correctamente modelos lineales y cuadráticos a la relación entre la GC y el LAI para todos los cultivos, pero en la gramínea alcanzaron una meseta para un LAI>4. Antes de alcanzar la cobertura total, la pendiente de la relación lineal entre ambas variables se situó en un rango entre 0.025 y 0.030. Las lecturas del LAI-2000 estuvieron correlacionadas linealmente con el LAI, aunque con tendencia a la sobreestimación. Las correcciones basadas en el efecto de aglutinación redujeron el error cuadrático medio del LAI estimado por el LAI-2000 desde 1.2 hasta 0.5 para la crucífera y la leguminosa, no siendo efectivas para la cebada. Esto determinó que para los siguientes estudios se midieran únicamente la GC y la biomasa. En el segundo experimento, las gramíneas alcanzaron la mayor cobertura del suelo (83-99%) y la mayor biomasa (1226-1928 g m-2) al final del mismo. Con la mayor relación C/N (27-39) y contenido en fibra digestible (53-60%) y la menor calidad de residuo (~68%). La mostaza presentó elevadas GC, biomasa y absorción de N en el año más templado en similitud con las gramíneas, aunque escasa calidad como forraje en ambos años. La veza presentó la menor absorción de N (2.4-0.7 g N m-2) debido a la fijación de N (9.8-1.6 g N m-2) y escasa acumulación de N. El tiempo térmico hasta alcanzar el 30% de GC constituyó un buen indicador de especies de rápida cubrición. La cuantificación de las variables permitió hallar variabilidad entre las especies y proporcionó información para posteriores decisiones sobre la selección y manejo de los cultivos cubierta. La agregación de dichas variables a través de funciones de utilidad permitió confeccionar rankings de especies y cultivares para cada uso. Las gramíneas fueron las más indicadas para los usos de cultivo de cobertura, cultivo captura y forraje, mientras que las vezas fueron las mejor como abono verde. La mostaza alcanzó altos valores como cultivo de cobertura y captura en el primer año, pero el segundo decayó debido a su pobre actuación en los inviernos fríos. Hispanic fue el mejor cultivar de cebada como cultivo de cobertura y captura, mientras que Albacete como forraje. El triticale Titania alcanzó la posición más alta como cultiva de cobertura, captura y forraje. Las vezas Aitana y BGE014897 mostraron buenas aptitudes como abono verde y cultivo captura. El MCDA permitió la comparación entre especies y cultivares proporcionando información relevante para la selección y manejo de cultivos cubierta. En el estudio en rhizotrones tanto la mezcla de especies como la cebada alcanzaron mayor intensidad de raíces (RI) y profundidad (RD) que la veza, con valores alrededor de 150 cruces m-1 y 1.4 m respectivamente, comparados con 50 cruces m-1 y 0.9 m para la veza. En las capas más profundas del suelo, la asociación de cultivos mostró valores de RI ligeramente mayores que la cebada en monocultivo. La cebada y la asociación obtuvieron mayores valores de densidad de raíces (RLD) (200-600 m m-3) que la veza (25-130) entre 0.8 y 1.2 m de profundidad. Los niveles de N no mostraron efectos claros en RI, RD ó RLD, sin embargo, el incremento de N favoreció la proliferación de raíces de veza en la asociación en capas profundas del suelo, con un ratio cebada/veza situado entre 25 a N0 y 5 a N2. La absorción de N de la cebada se incrementó en la asociación a expensas de la veza (de ~100 a 200 mg planta-1). Las raíces de cebada en la asociación absorbieron también más nitrógeno marcado de las capas profundas del suelo (0.6 mg 15N planta-1) que en el monocultivo (0.3 mg 15N planta-1). ABSTRACT Cover crop characterization may allow comparing the suitability of different species to provide ecological services such as erosion control, nutrient recycling or fodder production. Different techniques to characterize plant canopy were studied under field conditions in order to establish a methodology for measuring and comparing cover crops canopies. A field trial was established in Madrid (central Spain) to determine the relationship between leaf area index (LAI) and ground cover (GC) in a grass, a legume and a crucifer crop. Twelve plots were sown with either barley (Hordeum vulgare L.), vetch (Vicia sativa L.), or rape (Brassica napus L.). On 10 sampling dates the LAI (both direct and LAI-2000 estimations), fraction intercepted of photosynthetically active radiation (FIPAR) and GC were measured. A two-year field experiment (October-April) was established in the same location to evaluate different species (Hordeum vulgare L., Secale cereale L., x Triticosecale Whim, Sinapis alba L., Vicia sativa L.) and cultivars (20) according to their suitability to be used as cover crops. GC was monitored through digital image analysis with 21 and 22 samples, and biomass measured 8 and 10 times, respectively for each season. A Gompertz model characterized ground cover until the decay observed after frosts, while biomass was fitted to Gompertz, logistic and linear-exponential equations. At the end of the experiment C, N, and fiber (neutral detergent, acid and lignin) contents, and the N fixed by the legumes were determined. Multicriteria decision analysis (MCDA) was applied in order to rank the species and cultivars according to their suitability to perform as cover crops in four different modalities: cover crop, catch crop, green manure and fodder. Intercropping legumes and non-legumes may affect the root growth and N uptake of both components in the mixture. The knowledge of how specific root systems affect the growth of the individual species is useful for understanding the interactions in intercrops as well as for planning cover cropping strategies. In a third trial rhizotron studies were combined with root extraction and species identification by microscopy and with studies of growth, N uptake and 15N uptake from deeper soil layers. The root interactions of root growth and N foraging were studied for two of the best ranked cultivars in the previous study: a barley (Hordeum vulgare L. cv. Hispanic) and a vetch (Vicia sativa L. cv. Aitana). N was added at 0 (N0), 50 (N1) and 150 (N2) kg N ha-1. As a result, linear and quadratic models fitted to the relationship between the GC and LAI for all of the crops, but they reached a plateau in the grass when the LAI > 4. Before reaching full cover, the slope of the linear relationship between both variables was within the range of 0.025 to 0.030. The LAI-2000 readings were linearly correlated with the LAI but they tended to overestimation. Corrections based on the clumping effect reduced the root mean square error of the estimated LAI from the LAI-2000 readings from 1.2 to less than 0.50 for the crucifer and the legume, but were not effective for barley. This determined that in the following studies only the GC and biomass were measured. In the second experiment, the grasses reached the highest ground cover (83- 99%) and biomass (1226-1928 g/m2) at the end of the experiment. The grasses had the highest C/N ratio (27-39) and dietary fiber (53-60%) and the lowest residue quality (~68%). The mustard presented high GC, biomass and N uptake in the warmer year with similarity to grasses, but low fodder capability in both years. The vetch presented the lowest N uptake (2.4-0.7 g N/m2) due to N fixation (9.8-1.6 g N/m2) and low biomass accumulation. The thermal time until reaching 30% ground cover was a good indicator of early coverage species. Variable quantification allowed finding variability among the species and provided information for further decisions involving cover crops selection and management. Aggregation of these variables through utility functions allowed ranking species and cultivars for each usage. Grasses were the most suitable for the cover crop, catch crop and fodder uses, while the vetches were the best as green manures. The mustard attained high ranks as cover and catch crop the first season, but the second decayed due to low performance in cold winters. Hispanic was the most suitable barley cultivar as cover and catch crop, and Albacete as fodder. The triticale Titania attained the highest rank as cover and catch crop and fodder. Vetches Aitana and BGE014897 showed good aptitudes as green manures and catch crops. MCDA allowed comparison among species and cultivars and might provide relevant information for cover crops selection and management. In the rhizotron study the intercrop and the barley attained slightly higher root intensity (RI) and root depth (RD) than the vetch, with values around 150 crosses m-1 and 1.4 m respectively, compared to 50 crosses m-1 and 0.9 m for the vetch. At deep soil layers, intercropping showed slightly larger RI values compared to the sole cropped barley. The barley and the intercropping had larger root length density (RLD) values (200-600 m m-3) than the vetch (25-130) at 0.8-1.2 m depth. The topsoil N supply did not show a clear effect on the RI, RD or RLD; however increasing topsoil N favored the proliferation of vetch roots in the intercropping at deep soil layers, with the barley/vetch root ratio ranging from 25 at N0 to 5 at N2. The N uptake of the barley was enhanced in the intercropping at the expense of the vetch (from ~100 mg plant-1 to 200). The intercropped barley roots took up more labeled nitrogen (0.6 mg 15N plant-1) than the sole-cropped barley roots (0.3 mg 15N plant-1) from deep layers.
Resumo:
This research studied the effects of additional fiber in the rearing phase diets on egg production, gastrointestinal tract (GIT) traits, and body measurements of brown egg-laying hens fed diets varying in energy concentration from 17 to 46 wk of age. The experiment was completely randomized with 10 treatments arranged as a 5 × 2 factorial with 5 rearing phase diets and 2 laying phase diets. During the rearing phase, treatments consisted of a control diet based on cereals and soybean meal and 4 additional diets with a combination of 2 fiber sources (cereal straw and sugar beet pulp, SBP) at 2 levels (2 and 4%). During the laying phase, diets differed in energy content (2,650 vs. 2,750 kcal AMEn/kg) but had the same amino acid content per unit of energy. The rearing diet did not affect any production trait except egg production that was lower in birds fed SBP than in birds fed straw (91.6 and 94.1%, respectively; P < 0.05). Laying hens fed the high energy diet had lower feed intake (P < 0.001), better feed conversion (P < 0.01), and greater BW gain (P < 0.05) than hens fed the low energy diet but egg production and egg weight were not affected. At 46 wk of age, none of the GIT traits was affected by previous dietary treatment. At this age, hen BW was positively related with body length (r = 0.500; P < 0.01), tarsus length (r = 0.758; P < 0.001), and body mass index (r = 0.762; P < 0.001) but no effects of type of diet on these traits were detected. In summary, the inclusion of up to 4% of a fiber source in the rearing diets did not affect GIT development of the hens but SBP reduced egg production. An increase in the energy content of the laying phase diet reduced ADFI and improved feed efficiency but did not affect any of the other traits studied.
Resumo:
In cerebellar Purkinje neurons, γ-aminobutyric acid (GABA)-mediated inhibitory synaptic transmission undergoes a long-lasting “rebound potentiation” after the activation of excitatory climbing fiber inputs. Rebound potentiation is triggered by the climbing-fiber-induced transient elevation of intracellular Ca2+ concentration and is expressed as a long-lasting increase of postsynaptic GABAA receptor sensitivity. Herein we show that inhibitors of the Ca2+/calmodulin-dependent protein kinase II (CaM-KII) signal transduction pathway effectively block the induction of rebound potentiation. These inhibitors have no effect on the once established rebound potentiation, on voltage-gated Ca2+ channel currents, or on the basal inhibitory transmission itself. Futhermore, a protein phosphatase inhibitor and the intracellularly applied CaM-KII markedly enhanced GABA-mediated currents in Purkinje neurons. Our results demonstrate that CaM-KII activation and the following phosphorylation are key steps for rebound potentiation.
Resumo:
Elastic fibers consist of two morphologically distinct components: elastin and 10-nm fibrillin-containing microfibrils. During development, the microfibrils form bundles that appear to act as a scaffold for the deposition, orientation, and assembly of tropoelastin monomers into an insoluble elastic fiber. Although microfibrils can assemble independent of elastin, tropoelastin monomers do not assemble without the presence of microfibrils. In the present study, immortalized ciliary body pigmented epithelial (PE) cells were investigated for their potential to serve as a cell culture model for elastic fiber assembly. Northern analysis showed that the PE cells express microfibril proteins but do not express tropoelastin. Immunofluorescence staining and electron microscopy confirmed that the microfibril proteins produced by the PE cells assemble into intact microfibrils. When the PE cells were transfected with a mammalian expression vector containing a bovine tropoelastin cDNA, the cells were found to express and secrete tropoelastin. Immunofluorescence and electron microscopic examination of the transfected PE cells showed the presence of elastic fibers in the matrix. Biochemical analysis of this matrix showed the presence of cross-links that are unique to mature insoluble elastin. Together, these results indicate that the PE cells provide a unique, stable in vitro system in which to study elastic fiber assembly.
Resumo:
Phosphatidylcholine (PC) is a major source of lipid-derived second messenger molecules that function as both intracellular and extracellular signals. PC-specific phospholipase D (PLD) and phosphatidic acid phosphohydrolase (PAP) are two pivotal enzymes in this signaling system, and they act in series to generate the biologically active lipids phosphatidic acid (PA) and diglyceride. The identity of the PAP enzyme involved in PLD-mediated signal transduction is unclear. We provide the first evidence for a functional role of a type 2 PAP, PAP2b, in the metabolism of PLD-generated PA. Our data indicate that PAP2b localizes to regions of the cell in which PC hydrolysis by PLD is taking place. Using a newly developed PAP2b-specific antibody, we have characterized the expression, posttranslational modification, and localization of endogenous PAP2b. Glycosylation and localization of PAP2b appear to be cell type and tissue specific. Biochemical fractionation and immunoprecipitation analyses revealed that PAP2b and PLD2 activities are present in caveolin-1–enriched detergent-resistant membrane microdomains. We found that PLD2 and PAP2b act sequentially to generate diglyceride within this specialized membrane compartment. The unique lipid composition of these membranes may provide a selective environment for the regulation and actions of enzymes involved in signaling through PC hydrolysis.
Resumo:
Ornithine decarboxylase (ODC), the first enzyme in polyamine biosynthesis, is highly regulated by many trophic stimuli, and changes in its levels and organization correlate with cytoskeletal changes in normal human epidermal keratinocytes (NHEK). NHEK ODC exhibits a filamentous perinuclear/nuclear localization that becomes more diffuse under conditions that alter actin architecture. We have thus asked whether ODC colocalizes with a component of the NHEK cytoskeleton. Confocal immunofluorescence showed that ODC distribution in NHEK was primarily perinuclear; upon disruption of the actin cytoskeleton with cytochalasin D, ODC distribution was diffuse. The ODC distribution in untreated NHEK overlapped with that of keratin in the perinuclear but not cytoplasmic area; after treatment with cytochalasin D, overlap between staining for ODC and for keratin was extensive. No significant overlap with actin and minimal overlap with tubulin filament systems were observed. Subcellular fractionation by sequential homogenizations and centrifugations of NHEK lysates or detergent and salt extractions of NHEK in situ revealed that ODC protein and activity were detectable in both soluble and insoluble fractions, with mechanical disruption causing additional solubilization of ODC activity (three- to sevenfold above controls). Fractionation and ODC immunoprecipitation from [32P]orthophosphate-labeled NHEK lysates showed that a phosphorylated form of ODC was present in the insoluble fractions. Taken together, these data suggest that two pools of ODC exist in NHEK. The first is the previously described soluble pool, and the second is enriched in phospho-ODC and associated with insoluble cellular material that by immunohistochemistry appears to be organized in conjunction with the keratin cytoskeleton.
Resumo:
Extracellular lysophosphatidic acid (LPA) produces diverse cellular responses in many cell types. Recent reports of several molecularly distinct G protein-coupled receptors have raised the possibility that the responses to LPA stimulation could be mediated by the combination of several uni-functional receptors. To address this issue, we analyzed one receptor encoded by ventricular zone gene-1 (vzg-1) (also referred to as lpA1/edg-2) by using heterologous expression in a neuronal and nonneuronal cell line. VZG-1 expression was necessary and sufficient in mediating multiple effects of LPA: [3H]-LPA binding, G protein activation, stress fiber formation, neurite retraction, serum response element activation, and increased DNA synthesis. These results demonstrate that a single receptor, encoded by vzg-1, can activate multiple LPA-dependent responses in cells from distinct tissue lineages.