976 resultados para Acid Methyl-esters


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present thesis was to better understand the physiological role of the phytohormones jasmonates (JAs) and abscisic acid (ABA) during fruit ripening in prospect of a possible field application of JAs and ABA to improve fruit yield and quality. In particular, the effects of exogenous application of these substances at different fruit developmental stages and under different experimental conditions were evaluated. Some aspects of the water relations upon ABA treatment were also analysed. Three fruit species, peach (Prunus persica L. Batsch), golden (Actinidia chinensis) and green kiwifruit (Actinidia deliciosa), and several of their cvs, were used for the trials. Different experimental models were adopted: fruits in planta, detached fruit, detached branches with fruit, girdled branches and micropropagated plants. The work was structured into four sets of experiments as follows: (i) Pre-harvest methyl jasmonate (MJ) application was performed at S3/S4 transition under field conditions in Redhaven peach; ethylene production, ripening index, fruit quality and shelf-life were assessed showing that MJ-treated fruit were firmer and thus less ripe than controls as confirmed by the Index of Absorbance Difference (IAD), but exhibited a shorter shelf-life due to an increase in ethylene production. Moreover, the time course of the expression of ethylene-, auxin- and other ripening-related genes was determined. Ripening-related ACO1 and ACS1 transcript accumulation was inhibited though transiently by MJ, and gene expression of the ethylene receptor ETR2 and of the ethylene-related transcription factor ERF2 was also altered. The time course of the expression of several auxin-related genes was strongly affected by MJ suggesting an increase in auxin biosynthesis, altered auxin conjugation and release as well as perception and transport; the need for a correct ethylene/auxin balance during ripening was confirmed. (ii) Pre- and post-harvest ABA applications were carried out under field conditions in Flaminia and O’Henry peach and Stark Red Gold nectarine fruit; ethylene production, ripening index, fruit quality and shelf-life were assessed. Results show that pre-harvest ABA applications increase fruit size and skin color intensity. Also post-harvest ABA treatments alter ripening-related parameters; in particular, while ethylene production is impaired in ABA-treated fruit soluble solids concentration (SSC) is enhanced. Following field ABA applications stem water potential was modified since ABA-treated peach trees retain more water. (iii) Pre- and post-harvest ABA and PDJ treatments were carried out in both kiwifruit species under field conditions at different fruit developmental stages and in post-harvest. Ripening index, fruit quality, plant transpiration, photosynthesis and stomatal conductance were assessed. Pre-harvest treatments enhance SSC in the two cvs and flesh color development in golden kiwifruit. Post-harvest applications of either ABA or ABA plus PDJ lead to increased SSC. In addition, ABA reduces gas exchanges in A. deliciosa. (iv) Spray, drench and dipping ABA treatments were performed in micropropagated peach plants and in peach and nectarine detached branches; plant water use and transpiration, biomass production and fruit dehydration were determined. In both plants and branches ABA significantly reduces water use and fruit dehydration. No negative effects on biomass production were detected. The present information, mainly arising from plant growth regulator application in a field environment, where plants have to cope with multiple biotic and abiotic stresses, may implement the perspectives for the use of these substances in the control of fruit ripening.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biodiesel represents a possible substitute to the fossil fuels; for this reason a good comprehension of the kinetics involved is important. Due to the complexity of the biodiesel mixture a common practice is the use of surrogate molecules to study its reactivity. In this work are presented the experimental and computational results obtained for the oxidation and pyrolysis of methane and methyl formate conducted in a plug flow reactor. The work was divided into two parts: the first one was the setup assembly whilst, in the second one, was realized a comparison between the experimental and model results; these last was obtained using models available in literature. It was started studying the methane since, a validate model was available, in this way was possible to verify the reliability of the experimental results. After this first study the attention was focused on the methyl formate investigation. All the analysis were conducted at different temperatures, pressures and, for the oxidation, at different equivalence ratios. The results shown that, a good comprehension of the kinetics is reach but efforts are necessary to better evaluate kinetics parameters such as activation energy. The results even point out that the realized setup is adapt to study the oxidation and pyrolysis and, for this reason, it will be employed to study a longer chain esters with the aim to better understand the kinetic of the molecules that are part of the biodiesel mixture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Die exzitatorische Neurotransmission erfolgt über ionotrope Glutamat-Rezeptoren von denen dem NMDA-(N-Methyl-D-aspartat)-Rezeptor durch seine hohe Leitfähigkeit für Ca2+-Ionen eine besondere Rolle zugesprochen wird. Bei seiner Überaktivierung kommt es zu exzitotoxischen Prozessen, die direkt mit neurodegenerativen Erkrankungen einhergehen und nach einem Schlaganfall, bei akuten Epilepsien, Morbus Parkinson, Alzheimer Demenz aber auch im Bereich der neuropathischen Schmerzentstehung eine wichtige Rolle spielen.rnDurch das Eingreifen in die glutamatvermittelten pathologischen Prozesse verspricht man sich daher die Möglichkeit einer Neuroprotektion bei der Therapie verschiedener neurodegenerativer Erkrankungen, die primär auf völlig unterschiedliche Ursachen zurückzuführen sind.rnAusgehend von in früheren Arbeiten synthetisierten Hydantoin-substituierten Dichlor-indol-2-carbonsäure-Derivaten, die hochaffine Eigenschaften zur Glycin-Bindungsstelle des NMDA-Rezeptors aufweisen, sollten neue Derivate entwickelt und untersucht werden, die hinsichtlich ihrer Affinität zur Glycin-Bindungsstelle des NMDA-Rezeptors, ihrer Pharmakokinetik sowie physikochemischen Parameter in präparativ-organischen, radiopharmazeutischen und zell- bzw. tierexperimentellen Studien in vitro sowie in vivo charakterisiert werden sollten. Von besonderem Interesse war dabei die Evaluierung der synthetisierten Verbindungen in einem Verdrängungsassay mit dem Radioliganden [3H]MDL105,519 mit dem der Einfluss der strukturellen Modifikationen auf die Affinität zur Glycin-Bindungsstelle des Rezeptors untersucht wurde, sowie die Selektivität und die Potenz der Liganden abgeschätzt wurde.rnIm Rahmen der Struktur-Wirkungs-Untersuchungen mit Hilfe der Bindungsexperimente konnten bestimmte Strukturmerkmale als essentiell herausgestellt bzw. bekräftigt werden. Die Testverbindungen zeigten dabei IC50-Werte im Bereich von 0,0028 bis 51,8 μM. Die entsprechenden Ester dagegen IC50-Werte von 23,04 bis >3000 μM. Als vielversprechende Strukturen mit Affinitäten im niedrigen nanomolaren Bereich stellten sich Derivate mit einer 4,6-Dichlor-oder Difluor-Substitution am Indolgrundgerüst (2,8 bis 4,6 nM) heraus. Auch die Substitution des Phenylhydantoin-Teils durch das bioisostere Thienylhydantoin führte zu einer gleichbleibenden ausgeprägten Affinität (3,1 nM). rnZur Abschätzung der Bioverfügbarkeit, insbesondere der Fähigkeit zur Überwindung der Blut-Hirn-Schranke, wurden die Lipophilien bei einer Auswahl der Testverbindungen durch Bestimmung ihrer log P-Werte ermittelt. Neben dem Verfahren der potentiometrischen Titration wurde eine HPLC-Methode an einer RP-Phase verwendet.rnUm das Zytotoxizitätsprofil der synthetisierten Strukturen frühzeitig abschätzen zu können, wurde ein schnell durchführbares, zellbasiertes in vitro-Testsystem, der kommerziell erhältliche „Cell Proliferation Kit II (XTT-Test)“, eingesetzt. rnIm Rahmen von Positronen-Emissions-Tomographie-Experimenten an Ratten wurde eine Aussage bezüglich der Aufnahme und Verteilung eines radioaktiv markierten, hochaffinen Liganden an der Glycinbindungsstelle des NMDA-Rezeptors im Gehirn getroffen. Dabei wurden sowohl ein Carbonsäure-Derivat sowie der korrespondierende Ethylester dieser Testung unterworfen.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While polymers with different functional groups along the backbone have intensively been investigated, there is still a challenge in orthogonal functionalization of the end groups. Such well-defined systems are interesting for the preparation of multiblock (co) polymers or polymer networks, for bio-conjugation or as model systems for examining the end group separation of isolated polymer chains. rnHere, Reversible Addition Fragmentation Chain Transfer (RAFT) polymerization was employed as method to investigate improved techniques for an a, w end group functionalization. RAFT produces polymers terminated in an R group and a dithioester-Z group, where R and Z stem from a suitable chain transfer agent (CTA). rnFor alpha end group functionalization, a CTA with an activated pentafluorophenyl (PFP) ester R group was designed and used for the polymerization of various methacrylate monomers, N-isopropylacrylamide and styrene yielding polymers with a PFP ester as a end group. This allowed the introduction of inert propyl amides, of light responsive diazo compounds, of the dyes NBD, Texas Red, or Oregon Green, of the hormone thyroxin and allowed the formation of multiblocks or peptide conjugates. rnFor w end group functionalization, problems of other techniques were overcome through an aminolysis of the dithioester in the presence of a functional methane thiosulfonate (MTS), yielding functional disulfides. These disulfides were stable under ambient conditions and could be cleaved on demand. Using MTS chemistry, terminal methyl disulfides (enabling self-assembly on planar gold surfaces and ligand substitution on gold and semiconductor nanoparticles), butynyl disulfide end groups (allowing the “clicking” of the polymers onto azide functionalized surfaces and the selective removal through reduction), the bio-target biotin, and the fluorescent dye Texas Red were introduced into polymers. rnThe alpha PFP amidation could be performed under mild conditions, without substantial loss of DTE. This way, a step-wise synthesis produced polymers with two functional end groups in very high yields. rnAs examples, polymers with an anchor group for both gold nanoparticles (AuNP) and CdSe / ZnS semi-conductor nanoparticles (QD) and with a fluorescent dye end group were synthesized. They allowed a NP decoration and enabled an energy transfer from QD to dye or from dye to AuNP. Water-soluble polymers were prepared with two different bio-target end groups, each capable of selectively recognizing and binding a certain protein. The immobilization of protein-polymer-protein layers on planar gold surfaces was monitored by surface plasmon resonance.Introducing two different fluorescent dye end groups enabled an energy transfer between the end groups of isolated polymer chains and created the possibility to monitor the behavior of single polymer chains during a chain collapse. rnThe versatility of the synthetic technique is very promising for applications beyond this work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Folic acid, also known as vitamin B9, is the oxidized form of 5,6,7,8-tetrahydrofolate, which serves as methyl- or methylene donor (C1-building blocks) during DNA synthesis. Under physiological conditions the required amount of 5,6,7,8-tetrahydrofolate for survival of the cell is accomplished through the reduced folate carrier (RFC). In contrast, the supply of 5,6,7,8-tetrahydrofolate is insufficient under pathophysiological conditions of tumors due to an increased proliferation rate. Consequently, many tumor cells exhibit an (over)expression of the folate receptor. This phenomenon has been applied to diagnostics (PET, SPECT, MR) to image FR-positive tumors and on the other hand to treat malignancies related to a FR (over)expression. Based on this concept, a new 18F-labeled folate for PET imaging has been developed and was evaluated in vivo using tumor-bearing mice. The incorporation of oligoethylene spacers into the molecular structure led to a significant enhancement of the pharmacokinetics in comparison to previously developed 18F-folates. The liver uptake could be reduced by one sixth by remaining a tumor uptake of 3%ID/g leading to better contrast ratios. Encouraged by these results, a clickable 18F-labeled serine-based prosthetic group has been synthesized, again with the idea to improve the metabolic and pharmacokinetic profile of hydrophilic radiotracers. Therefore, an alkyne-carrying azido-functionalized serine derivative for coupling to biomolecules was synthesized and a chlorine leaving group for 18F-labeling, which could be accomplished using a microwave-assisted synthesis, a [K⊂2.2.2]+/carbonate system in DMSO. Radiochemical yields of 77±6% could be achieved.rnThe promising results obtained from the FR-targeting concept in the diagnostic field have been transferred to the boron neutron capture therapy. Therefore, a folate derivative was coupled to different boron clusters and cell uptake studies were conducted. The synthesis of the folate-boron clusters was straightforward. At first, a linker molecule based on maleic acid was synthesized, which was coupled to the boron cluster via Michael Addition of a thiol and alkene and subsequently coupled to the targeting moiety using CuAAC. The new conjugates of folate and boron clusters led to a significant increase of boron concentration in the cell of about 5-times compared to currently used and approved boron pharmaceuticals. rnMoreover, azido-folate derivatives were coupled to macromolecular carrier systems (pHPMA), which showed an enhanced and specific accumulation at target sites (up to 2.5-times) during in vivo experiments. A specific blockade could be observed up to 30% indicating an efficient targeting effect. A new kind of nanoparticles consisting of a PDLLA core and p((HPMA)-b-LMA)) as surfactants were developed and successfully radiolabeled via 18F-click chemistry in good RCYs of 8±3%rnThe nanoparticles were obtained via the miniemulsion technique in combination with solvent evaporation. The 18F-labeled nanoparticles were applied to in vivo testing using a mouse model. PET imaging showed a “mixed” biodistribution of low molecular weight as well as high molecular weight systems, indicating a partial loss of the 18F-labeled surfactant.rnIn conclusion, the presented work successfully utilized the FR-targeting concept in both, the diagnostic field (PET imaging) and for therapeutic approaches (BNCT, drug delivery systems). As a result, the high potential of FR-targeting in oncological applications has been shown and was confirmed by small animal PET imaging.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Because of the poor solubility of the commercially available bisacylphosphine oxides in dental acidic aqueous primer formulations, bis(3-{[2-(allyloxy)ethoxy]methyl}-2,4,6-trimethylbenzoyl)(phenyl)phosphine oxide (WBAPO) was synthesized starting from 3-(chloromethyl)-2,4,6-trimethylbenzoic acid by the dichlorophosphine route. The substituent was introduced by etherification with 2-(allyloxy)ethanol. In the second step, 3-{[2-(allyloxy)ethoxy]methyl}-2,4,6-trimethylbenzoic acid was chlorinated. The formed acid chloride showed an unexpected low thermal stability. Its thermal rearrangement at 180 ° C resulted in a fast formation of 3-(chloromethyl)-2,4,6-trimethylbenzoic acid 2-(allyloxy)ethyl ester. In the third step, the acid chloride was reacted with phenylphosphine dilithium with the formation of bis(3-{[2-(allyloxy)ethoxy]methyl}-2,4,6-trimethylbenzoyl)(phenyl)phosphine, which was oxidized to WBAPO. The structure of WBAPO was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR, and IR spectroscopy, as well as elemental analysis. WBAPO, a yellow liquid, possesses improved solubility in polar solvents and shows UV-vis absorption, and a high photoreactivity comparable with the commercially available bisacylphosphine oxides. A sufficient storage stability was found in dental acidic aqueous primer formulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A computationally efficient procedure for modeling the alkaline hydrolysis of esters is proposed based on calculations performed on methyl acetate and methyl benzoate systems. Extensive geometry and energy comparisons were performed on the simple ester methyl acetate. The effectiveness of performing high level single point ab initio energy calculations on the geometries obtained from semiempirical and ab initio methods was determined. The AM1 and PM3 semiempirical methods are evaluated for their ability to model the transition states and intermediates for ester hydrolysis. The Cramer/Truhlar SM3 solvation method was used to determine activation energies. The most computationally efficient way to model the transition states of large esters is to use the PM3 method. The PM3 transition structure can then be used as a template for the design of haptens capable of inducing catalytic antibodies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sustained high-level exposure to glutamate, an excitatory amino acid neurotransmitter, leads to neuronal death. Kynurenic acid attenuates the toxic effects of glutamate by inhibition of neuronal excitatory amino acid receptors, including the N-methyl-D-aspartate subtype. To evaluate the role of glutamate in causing neuronal injury in a rat model of meningitis due to group B streptococci, animals were treated with kynurenic acid (300 mg/kg subcutaneously once daily) or saline beginning at the time of infection. Histopathologic examination after 24-72 h showed two distinct forms of neuronal injury, areas of neuronal necrosis in the cortex and injury of dentate granule cells in the hippocampus. Animals treated with kynurenic acid showed significantly less neuronal injury (P < .03) in the cortex and the hippocampus than did untreated controls. These results suggest an important contribution of glutamate to neurotoxicity in this animal model of neonatal meningitis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phenylketonuria, an autosomal recessive Mendelian disorder, is one of the most common inborn errors of metabolism. Although currently treated by diet, many suboptimal outcomes occur for patients. Neuropathological outcomes include cognitive loss, white matter abnormalities, and hypo- or demyelination, resulting from high concentrations and/or fluctuating levels of phenylalanine. High phenylalanine can also result in competitive exclusion of other large neutral amino acids from the brain, including tyrosine and tryptophan (essential precursors of dopamine and serotonin). This competition occurs at the blood brain barrier, where the L-type amino acid transporter, LAT1, selectively facilitates entry of large neutral amino acids. The hypothesis of these studies is that certain non-physiological amino acids (NPAA; DL-norleucine (NL), 2-aminonorbornane (NB; 2-aminobicyclo-(2,1,1)-heptane-2-carboxylic acid), α-aminoisobutyrate (AIB), and α-methyl-aminoisobutyrate (MAIB)) would competitively inhibit LAT1 transport of phenylalanine (Phe) at the blood-brain barrier interface. To test this hypothesis, Pah-/- mice (n=5, mixed gender; Pah+/-(n=5) as controls) were fed either 5% NL, 0.5% NB, 5% AIB or 3% MAIB (w/w 18% protein mouse chow) for 3 weeks. Outcome measurements included food intake, body weight, brain LNAAs, and brain monoamines measured via LCMS/MS or HPLC. Brain Phe values at sacrifice were significantly reduced for NL, NB, and MAIB, verifying the hypothesis that these NPAAs could inhibit Phe trafficking into the brain. However, concomitant reductions in tyrosine and methionine occurred at the concentrations employed. Blood Phe levels were not altered indicating no effect of NPAA competitors in the gut. Brain NL and NB levels, measured with HPLC, verified both uptake and transport of NPAAs. Although believed predominantly unmetabolized, NL feeding significantly increased blood urea nitrogen. Pah-/-disturbances of monoamine metabolism were exacerbated by NPAA intervention, primarily with NB (the prototypical LAT inhibitor). To achieve the overarching goal of using NPAAs to stabilize Phe transport levels into the brain, a specific Phe-reducing combination and concentration of NPAAs must be found. Our studies represent the first in vivo use of NL, NB and MAIB in Pah-/- mice, and provide proof-of-principle for further characterization of these LAT inhibitors. Our data is the first to document an effect of MAIB, a specific system A transport inhibitor, on large neutral amino acid transport.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An efficient aza-Michael addition of amines to a series of ,-unsaturated ketones, carboxylic esters, nitriles and chalcones has been carried out using perchloric acid supported over silica gel (HClO4-SiO2) at room temperature in high yields under solvent-free reaction conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Breast cancer is the most common malignancy among women in the world. Its 5-year survival rate ranges from 23.4% in patients with stage IV to 98% in stage I disease, highlighting the importance of early detection and diagnosis. 18F-2-Fluoro-2-deoxy-glucose (18F-FDG), using positron emission tomography (PET), is the most common functional imaging tool for breast cancer diagnosis currently. Unfortunately, 18F-FDG-PET has several limitations such as poorly differentiating tumor tissues from inflammatory and normal brain tissues. Therefore, 18F-labeled amino acid-based radiotracers have been reported as an alternative, which is based on the fact that tumor cells uptake and consume more amino acids to sustain their uncontrolled growth. Among those radiotracers, 18F-labeled tyrosine and its derivatives have shown high tumor uptake and great ability to differentiate tumor tissue from inflammatory sites in brain tumors and squamous cell carcinoma. They enter the tumor cells via L-type amino acid transporters (LAT), which were reported to be highly expressed in many cancer cell lines and correlate positively with tumor growth. Nevertheless, the low radiosynthesis yield and demand of an on-site cyclotron limit the use of 18F-labeled tyrosine analogues. In this study, four Technetium-99m (99mTc) labeled tyrosine/ AMT (α-methyl tyrosine)-based radiotracers were successfully synthesized and evaluated for their potentials in breast cancer imaging. In order to radiolabel tyrosine and AMT, the chelators N,N’-ethylene-di-L-cysteine (EC) and 1,4,8,11-tetra-azacyclotetradecane (N4 cyclam) were selected to coordinate 99mTc. These chelators have been reported to provide stable chelation ability with 99mTc. By using the chelator technology, the same target ligand could be labeled with different radioisotopes for various imaging modalities for tumor diagnosis, or for internal radionuclide therapy in future. Based on the in vitro and in vivo evaluation using the rat mammary tumor models, 99mTc-EC-AMT is considered as the most suitable radiotracer for breast cancer imaging overall, however, 99mTc-EC-Tyrosine will be more preferred for differential diagnosis of tumor from inflammation.