676 resultados para Acelerador de Fermi
Resumo:
Traditional cutoff regularization schemes of the Nambu-Jona-Lasinio model limit the applicability of the model to energy-momentum scales much below the value of the regularizing cutoff. In particular, the model cannot be used to study quark matter with Fermi momenta larger than the cutoff. In the present work, an extension of the model to high temperatures and densities recently proposed by Casalbuoni, Gatto, Nardulli, and Ruggieri is used in connection with an implicit regularization scheme. This is done by making use of scaling relations of the divergent one-loop integrals that relate these integrals at different energy-momentum scales. Fixing the pion decay constant at the chiral symmetry breaking scale in the vacuum, the scaling relations predict a running coupling constant that decreases as the regularization scale increases, implementing in a schematic way the property of asymptotic freedom of quantum chromodynamics. If the regularization scale is allowed to increase with density and temperature, the coupling will decrease with density and temperature, extending in this way the applicability of the model to high densities and temperatures. These results are obtained without specifying an explicit regularization. As an illustration of the formalism, numerical results are obtained for the finite density and finite temperature quark condensate and applied to the problem of color superconductivity at high quark densities and finite temperature.
Resumo:
Some scaling properties of the regular dynamics for a dissipative version of the one-dimensional Fermi accelerator model are studied. The dynamics of the model is given in terms of a two-dimensional nonlinear area contracting map. Our results show that the velocities of saddle fixed points (saddle velocities) can be described using scaling arguments for different values of the control parameter. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We propose a two band model for superconductivity. It turns out that the simplest nontrivial case considers solely interband scattering, and both bands can be modeled as symmetric (around the Fermi level) and flat, thus each band is completely characterized by its half-band width Wn (n=1,2). A useful dimensionless parameter is d, proportional to W2 - W1. The case delta = 0 retrieves the conventional BCS model. We probe the specific heat, the ratio gap over critical temperature, the thermodynamic critical field and tunneling conductance as functions of d and temperature (from zero to Tc). We compare our results with experimental results for MgB2 and good quantitative agreement is obtained, indicating the relevance of interband coupling. Work in progress also considers the inclusion of band hybridization and general interband as well as intra-band scattering mechanisms.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The construction of a q-deformed N = 2 superconformal algebra is proposed in terms of level-1 currents of the U-q(<(su)over cap>(2)) quantum affine Lie algebra and a single real Fermi field. In particular, it suggests the expression for the q-deformed energy-momentum tensor in the Sugawara form. Its constituents generate two isomorphic quadratic algebraic structures. The generalization to U-q(<(su)over cap>(N + 1)) is also proposed.
Resumo:
We study the effect of bound nucleon form factors on charged-current neutrino-nucleus scattering. The bound nucleon form factors of the vector and axial-vector currents are calculated in the quark-meson coupling model. We compute the inclusive C-12(nu(mu),mu(-))X cross sections using a relativistic Fermi gas model with the calculated bound nucleon form factors. The effect of the bound nucleon form factors for this reaction is a reduction of similar to8% for the total cross section, relative to that calculated with the free nucleon form factors.
Resumo:
The Su-Schrieffer-Heeger (SSH) Hamiltonian has been one of most used models to study the electronic structure of polyacetylene (PA) chains. It has been reported in the literature that in the SSH framework a disordered soliton distribution can not produce a metallic regime. However, in this work (using the same SSH model and parameters) we show that this is possible. The necessary conditions for true metals (non-vanishing density of states and extended wavefunctions around the Fermi level) are obtained for soliton concentration higher than 6% through soliton segregation (clustering). These results are consistent with recent experimental data supporting disorder as an essential mechanism behind the high conductivity of conducting polymers. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
In the present work, the electronic structure of polythiophene at several doping levels is investigated by the use of the Huckel Hamiltonian with sigma-bond compressibility. Excess charges are assumed to be stored in conformational defects of the bipolaron type. The Hamiltonian matrix elements representative of a bipolaron are obtained from a previous thiophene oligomer calculation, and then transferred to very long chains. Negative factor counting and inverse iteration techniques have been used to evaluate densities of states and wave functions, respectively. Several types of defect distributions were analyzed. Our results are consistent with the following: (i) the bipolaron lattice does not present a finite density of states at the Fermi energy at any doping level; (ii) bipolaron clusters show an insulator-to-metal transition at 8 mol% doping level; (iii) segregation disorder shows an insulator-to-metal transition for doping levels in the range 20-30 mor %.