933 resultados para Abrupt edges removal
Resumo:
A number of tetraalkylammonium and tetraalkylphosphonium amino acid based ionic liquids (AAILs) have been successfully used and recycled for the reactive extraction of naphthenic acids from crude oil and crude oil distillates. Spectral studies show that the mechanism by which this occurs is through the formation of a zwitterionic complex. Therein, the amino acid anion plays a key role in the formation of this complex. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Biosignal measurement and processing is increasingly being deployed in ambulatory situations particularly in connected health applications. Such an environment dramatically increases the likelihood of artifacts which can occlude features of interest and reduce the quality of information available in the signal. If multichannel recordings are available for a given signal source, then there are currently a considerable range of methods which can suppress or in some cases remove the distorting effect of such artifacts. There are, however, considerably fewer techniques available if only a single-channel measurement is available and yet single-channel measurements are important where minimal instrumentation complexity is required. This paper describes a novel artifact removal technique for use in such a context. The technique known as ensemble empirical mode decomposition with canonical correlation analysis (EEMD-CCA) is capable of operating on single-channel measurements. The EEMD technique is first used to decompose the single-channel signal into a multidimensional signal. The CCA technique is then employed to isolate the artifact components from the underlying signal using second-order statistics. The new technique is tested against the currently available wavelet denoising and EEMD-ICA techniques using both electroencephalography and functional near-infrared spectroscopy data and is shown to produce significantly improved results. © 1964-2012 IEEE.
Resumo:
Purpose
– The purpose of this paper is to investigate the performance of natural Jordanian zeolite tuff to remove ammonia from aqueous solutions using a laboratory batch method and fixed-bed column apparatus. Equilibrium data were fitted to Langmuir and Freundlich models.
Design/methodology/approach
– Column experiments were conducted in packed bed column. The used apparatus consisted of a bench-mounted glass column of 2.5 cm inside diameter and 100 cm height (column volume = 490 cm3). The column was packed with a certain amount of zeolite to give the desired bed height. The feeding solution was supplied from a 30 liter plastic container at the beginning of each experiment and fed to the column down-flow through a glass flow meter having a working range of 10-280ml/min.
Findings
– Ammonium ion exchange by natural Jordanian zeolite data were fitted by Langmuir and Freundlich isotherms. Continuous sorption of ammonium ions by natural Jordanian zeolite tuff has proven to be effective in decreasing concentrations ranging from 15-50 mg NH4-N/L down to levels below 1 mg/l. Breakthrough time increased by increasing the bed depth as well as decreasing zeolite particle size, solution flow-rate, initial NH4+ concentration and pH. Sorption of ammonium by the zeolite under the tested conditions gave the sorption capacity of 28 mg NH4-N/L at 20°C, and 32 mg NH4-N/L at 30°C.
Originality/value
– This research investigates the performance of natural Jordanian zeolite tuff to remove ammonia from aqueous solutions using a laboratory batch method and fixed-bed column apparatus. The equilibrium data of the sorption of Ammonia were plotted by using the Langmuir and Freundlich isotherms, then the experimental data were compared to the predictions of the above equilibrium isotherm models. It is clear that the NH4+ ion exchange data fitted better with Langmuir isotherm than with Freundlich model and gave an adequate correlation coefficient value.
Resumo:
Several methods have been proposed to ‘clean’ the soft tissues of molluscs of mucus, so that the surface cilia can be examined microscopically. We report the first empirical test of the effectiveness of methods for removing mucus in the pallial cavity surface of chitons. Three methods were compared, at several time intervals: the enzyme hyaluronidase, the mucolytic agent N-acetyl cysteine (NAC), and seawater washing via the natural action of cilia in excised tissue. Treatment in NAC for 10 min produced the best results, and we recommend this protocol as a starting point for further investigation on mucus removal in a broader suite of taxa. We present the first description of the pallial surface cilia in the chiton Lepidochitona cinerea. During the course of this study, we also determined that these chitons were frequently infested with a ciliate protozoan parasite, Trichodina sp., which have been historically reported from chitons but never studied in detail. The parasites were absent where antimucus treatments were effective, but their abundance and large size (about 30-mm diameter) in less successful treatments obscured the view of the pallial cavity surface.
Resumo:
An environment friendly arsenic removal technique from contaminated soil with high iron content has been studied. A natural surfactant extracted from soapnut fruit, phosphate solution and their mixture was used separately as extractants. The mixture was most effective in desorbing arsenic, attaining above 70 % efficiency in the pH range of 4–5. Desorption kinetics followed Elovich model. Micellar solubilization by soapnut and arsenic exchange mechanism by phosphate are the probable mechanisms behind arsenic desorption. Sequential extraction reveals that the mixed soapnut–phosphate system is effective in desorbing arsenic associated with amphoteric–Fe-oxide forms. No chemical change to the wash solutions was observed by Fourier transform-infrared spectra. Soil:solution ratio, surfactant and phosphate concentrations were found to affect the arsenic desorption process. Addition of phosphate boosted the performance of soapnut solution considerably. Response surface methodology approach predicted up to 80 % desorption of arsenic from soil when treated with a mixture of ≈1.5 % soapnut, ≈100 mM phosphate at a soil:solution ratio of 1:30.
Resumo:
An experimental study on the adsorption of phosphate onto cost effective fine dolomite powder is presented. The effect of solution pH, solution ionic strength and adsorption isotherm were examined. The adsorption of phosphate was pH dependent and phosphate adsorption favoured acidic conditions. The adsorption was significantly influenced by solution ionic strength indicating outer-sphere complexation reactions. The experimental data further indicated that the removal of phosphate increased with increase in the ionic strength of solution. The experimental data were modelled with different isotherms: Langmuir, Freundlich and Redlich–Peterson isotherms. It was found that the Redlich–Peterson isotherm depicted the equilibrium data most accurately. The overall kinetic data fitted very well the pseudo-first-order rate model.
Resumo:
Colloidal gas aphron dispersions (CGAs) can be described as a system of microbubbles suspended homogenously in a liquid matrix. This work examines the performance of CGAs in comparison to surfactant solutions for washing low levels of arsenic from an iron rich soil. Sodium Dodecyl Sulfate (SDS) and saponin, a biodegradable surfactant, obtained from Sapindus mukorossi or soapnut fruit were used for generating CGAs and solutions for soil washing. Column washing experiments were performed in down-flow and up flow modes at a soil pH of 5 and 6 using varying concentration of SDS and soapnut solutions as well as CGAs. Soapnut CGAs removed more than 70% arsenic while SDS CGAs removed up to 55% arsenic from the soil columns in the soil pH range of 5–6. CGAs and solutions showed comparable performances in all the cases. CGAs were more economical since it contains 35% of air by volume, thereby requiring less surfactant. Micellar solubilization and low pH of soapnut facilitated arsenic desorption from soil column. FT-IR analysis of effluent suggested that soapnut solution did not interact chemically with arsenic thereby facilitating the recovery of soapnut solution by precipitating the arsenic. Damage to soil was minimal arsenic confirmed by metal dissolution from soil surface and SEM micrograph.
Resumo:
With most recent studies being focused on the development of
advanced chemical adsorbents, this paper investigates the possibility of
using two natural low-cost materials for selective adsorption. Multiadsorbent
systems containing tea waste and dolomite have been tested for
their effectiveness in the removal of copper and methylene blue from
aqueous solutions. The effects of contact time, solution pH and
adsorption isotherms on the sorption behaviour were investigated. The
Langmuir and Freundlich isotherms adequately described the adsorption of
copper ions and methylene blue by both materials in different systems.
The highest adsorption capacities for Cu and MB were calculated as 237.7
at pH 4.5 and 150.44 mg.g‒1 at pH 7 for DO and TW+DO respectively. Tea
waste (TW) and dolomite (DO) were characterized by Fourier transform
infrared spectroscopy, scanning electron microscopy and Energy dispersive
X-ray analysis. The removal of Cu and MB by dolomite was mainly via
surface complexation while physisorption was responsible for most of the
Cu and MB adsorption onto tea waste. Identifying the fundamental mechanisms and behaviour is key to the development of practical multi-adsorbent packed columns.
Resumo:
This work presents the possibility of optimising 3D Organised Mesoporous Silica (OMS) coated with both iron and aluminium oxides for the optimal removal of As(III) and As(V) from synthetic contaminated water. The materials developed were fully characterised and were tested for removing arsenic in batch experiments. The effect of total Al to Fe oxides coating on the selective removal of As(III) and As(V) was studied. It was shown that 8% metal coating was the optimal configuration for the coated OMS materials in removing arsenic. The effect of arsenic initial concentration and pH, kinetics and diffusion mechanisms was studied, modelled and discussed. It was shown that the advantage of an organised material over an un-structured sorbent was very limited in terms of kinetic and diffusion under the experimental conditions. It was shown that physisorption was the main adsorption process involved in As removal by the coated OMS. Maximum adsorption capacity of 55 mg As(V).g-1 was noticed at pH 5 for material coated with 8% Al oxides while 35 mg As(V).g-1 was removed at pH 4 for equivalent material coated with Fe oxides.
Resumo:
The study explores the application of a two-stage electrokinetic washing system on remediation of lead (Pb) contaminated soil. The process involved an initial soil washing, followed by an electrokinetic process. The use of electrokinetic process in soil washing not only provided additional driving force for transporting the desorbed Pb away from the soil but also reduced the high usage of wash solution. In this study, the effect of NaNO3, HNO3, citric acid and EDTA as wash solutions on two-stage electrokinetic washing system were evaluated. The results revealed that a two-stage electrokinetic washing process enhanced Pb removal efficiency by 2.52-9.08% and 4.98-20.45% in comparison to a normal electrokinetic process and normal washing process, respectively. Low pH and adequate current were the most important criteria in the removal process as they provided superior desorption and transport properties. The effect of chelating by EDTA was less dominant as it delayed the removal process by forming a transport loop in anode region between Pb ion and complexes. HNO3 was not suitable as wash solution in electrokinetic washing in spite of offering highest removal efficiency as it caused pH fluctuation in the cathode chamber, corroded graphite anode and showed high power consumption. In contrast, citric acid not only yielded high Pb removal efficiency with low power consumption but also maintained a low soil: solution ratio of 1 g: <1 mL, stable pH and electrode integrity. Possible transport mechanisms for Pb under each wash solution are also discussed in this work.